Massimo Bottini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2030156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The protein corona modulates the inflammation inhibition by cationic nanoparticles via cell-free DNA scavenging. Bioactive Materials, 2022, 13, 249-259.	8.6	11
2	Fabrication and characterization of a bioactive <scp>p</scp> olymethylmethacrylateâ€based porous cement loaded with strontium/calcium apatite nanoparticles. Journal of Biomedical Materials Research - Part A, 2022, 110, 812-826.	2.1	5
3	Threeâ€dimensional cellâ€laden collagen scaffolds: From biochemistry to bone bioengineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 967-983.	1.6	6
4	The functional role of soluble proteins acquired by extracellular vesicles. , 2022, 1, .		5
5	Fluorescence evidence of annexin A6 translocation across membrane in model matrix vesicles during apatite formation. , 2022, 1, .		2
6	Curcumin-loaded carrageenan nanoparticles: Fabrication, characterization, and assessment of the effects on osteoblasts mineralization. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112622.	2.5	7
7	Synthesis of Antibacterial Hybrid Hydroxyapatite/Collagen/Polysaccharide Bioactive Membranes and Their Effect on Osteoblast Culture. International Journal of Molecular Sciences, 2022, 23, 7277.	1.8	5
8	Ultrasensitive Diamond Microelectrode Application in the Detection of Ca2+ Transport by AnnexinA5-Containing Nanostructured Liposomes. Biosensors, 2022, 12, 525.	2.3	6
9	Langmuir monolayers and proteoliposomes as models of matrix vesicles involved in biomineralization. Biophysical Reviews, 2021, 13, 893-895.	1.5	1
10	Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: A physicochemical understanding of matrix vesicle-driven biomineralization. Journal of Structural Biology, 2020, 212, 107607.	1.3	20
11	Lipid composition modulates ATP hydrolysis and calcium phosphate mineral propagation by TNAP-harboring proteoliposomes. Archives of Biochemistry and Biophysics, 2020, 691, 108482.	1.4	15
12	Characterization of the in Vitro Osteogenic Response to Submicron TiO ₂ Particles of Varying Structure and Crystallinity. ACS Omega, 2020, 5, 16491-16501.	1.6	5
13	Visualization of Mineralâ€Targeted Alkaline Phosphatase Binding to Sites of Calcification In Vivo. Journal of Bone and Mineral Research, 2020, 35, 1765-1771.	3.1	6
14	Cationic Block Copolymer Nanoparticles with Tunable DNA Affinity for Treating Rheumatoid Arthritis. Advanced Functional Materials, 2020, 30, 2000391.	7.8	29
15	Localization of Annexin A6 in Matrix Vesicles During Physiological Mineralization. International Journal of Molecular Sciences, 2020, 21, 1367.	1.8	20
16	Matrix vesicle biomimetics harboring Annexin A5 and alkaline phosphatase bind to the native collagen matrix produced by mineralizing vascular smooth muscle cells. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129629.	1.1	22
17	Cholesterol Regulates the Incorporation and Catalytic Activity of Tissue-Nonspecific Alkaline Phosphatase in DPPC Monolayers. Langmuir, 2019, 35, 15232-15241.	1.6	11
18	Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Archives of Biochemistry and Biophysics, 2019, 667, 14-21.	1.4	25

MASSIMO BOTTINI

#	Article	IF	CITATIONS
19	Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. ACS Nano, 2019, 13, 5036-5048.	7.3	122
20	Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophysics Reports, 2019, 5, 19-30.	0.2	52
21	Core–Satellite Nanomedicines for <i>in Vivo</i> Real-Time Monitoring of Enzyme-Activatable Drug Release by Fluorescence and Photoacoustic Dual-Modal Imaging. ACS Nano, 2019, 13, 176-186.	7.3	67
22	Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators. Journal of Bone and Mineral Metabolism, 2019, 37, 607-613.	1.3	17
23	Lightâ€Triggered Retention and Cascaded Therapy of Albuminâ€Based Theranostic Nanomedicines to Alleviate Tumor Adaptive Treatment Tolerance. Advanced Functional Materials, 2018, 28, 1707291.	7.8	68
24	Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Scientific Reports, 2018, 8, 1115.	1.6	62
25	Nitric Oxide Dependent Degradation of Polyethylene Glycolâ€Modified Singleâ€Walled Carbon Nanotubes: Implications for Intraâ€Articular Delivery. Advanced Healthcare Materials, 2018, 7, e1700916.	3.9	14
26	Matrix vesicles from chondrocytes and osteoblasts: Their biogenesis, properties, functions and biomimetic models. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 532-546.	1.1	131
27	Laser-Induced Transformable BiS@HSA/DTX Multiple Nanorods for Photoacoustic/Computed Tomography Dual-Modal Imaging Guided Photothermal/Chemo Combinatorial Anticancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 41167-41177.	4.0	16
28	Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. Nano Letters, 2018, 18, 6301-6311.	4.5	61
29	NVP-BEZ235/Chlorin-e6 co-loaded nanoparticles ablate breast cancer by biochemical and photodynamic synergistic effects. Nano Research, 2018, 11, 4846-4858.	5.8	6
30	Hyaluronic Acid Nanoporous Microparticles with Long In Vivo Joint Residence Time and Sustained Release. Particle and Particle Systems Characterization, 2017, 34, 1600411.	1.2	6
31	Topographic analysis by atomic force microscopy of proteoliposomes matrix vesicle mimetics harboring TNAP and AnxA5. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1911-1920.	1.4	31
32	Biophysical aspects of biomineralization. Biophysical Reviews, 2017, 9, 747-760.	1.5	50
33	Graphene and the Immune System: A Romance of Many Dimensions. Frontiers in Immunology, 2017, 8, 673.	2.2	56
34	TGFÎ ² responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Annals of the Rheumatic Diseases, 2016, 75, 295-302.	0.5	35
35	Tackling chondrocyte hypertrophy with multifunctional nanoparticles. Gene Therapy, 2016, 23, 560-564.	2.3	7
36	Phosphate induces formation of matrix vesicles during odontoblast-initiated mineralization in vitro. Matrix Biology, 2016, 52-54, 284-300.	1.5	52

MASSIMO BOTTINI

#	Article	IF	CITATIONS
37	Skeletal Mineralization Deficits and Impaired Biogenesis and Function of Chondrocyte-Derived Matrix Vesicles in <i>Phospho1</i> –/– and <i>Phospho1/Pit1</i> Double-Knockout Mice. Journal of Bone and Mineral Research, 2016, 31, 1275-1286.	3.1	53
38	Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 333-351.	1.7	322
39	Targeted nanosystems as therapeutic and diagnostic tools: The beautiful voyage of nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 253-254.	1.7	2
40	Nanodrugs to target articular cartilage: An emerging platform for osteoarthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 255-268.	1.7	50
41	Dual Role of the Trps1 Transcription Factor in Dentin Mineralization. Journal of Biological Chemistry, 2014, 289, 27481-27493.	1.6	27
42	Targeted Nanodrugs for Cancer Therapy: Prospects and Challenges. Journal of Nanoscience and Nanotechnology, 2014, 14, 98-114.	0.9	20
43	Polyethylene-Glycol-Modified Single-Walled Carbon Nanotubes for Intra-Articular Delivery to Chondrocytes. ACS Nano, 2014, 8, 12280-12291.	7.3	71
44	Enzymatic â€~stripping' and degradation of PEGylated carbon nanotubes. Nanoscale, 2014, 6, 14686-14690.	2.8	54
45	Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Particle and Fibre Toxicology, 2013, 10, 21.	2.8	107
46	Surface Polyethylene Glycol Conformation Influences the Protein Corona of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Potential Implications on Biological Performance. ACS Nano, 2013, 7, 1974-1989.	7.3	189
47	<i>In Vivo</i> Targeting of Intratumor Regulatory T Cells Using PEG-Modified Single-Walled Carbon Nanotubes. Bioconjugate Chemistry, 2013, 24, 852-858.	1.8	81
48	The Role of LMPTP in the Metabolic Syndrome. , 2013, , 203-220.		1
49	Modified carbon nanotubes: from nanomedicine to nanotoxicology. Proceedings of SPIE, 2012, , .	0.8	0
50	Nanocarriers of Antisense Oligonucleotides in Diabetes. , 2012, , 59-78.		0
51	PEC-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead. Biomacromolecules, 2011, 12, 3381-3393.	2.6	194
52	Public optimism towards nanomedicine. International Journal of Nanomedicine, 2011, 6, 3473.	3.3	31
53	Carbon Nanotube-Based Nanocarriers: The Importance of Keeping It Clean. Journal of Nanoscience and Nanotechnology, 2010, 10, 5293-5301.	0.9	31
54	In Silico Screening for PTPN22 Inhibitors: Active Hits from an Inactive Phosphatase Conformation. ChemMedChem, 2009, 4, 440-444.	1.6	32

MASSIMO BOTTINI

#	Article	IF	CITATIONS
55	Conjugation of Antisense Oligonucleotides to PEGylated Carbon Nanotubes Enables Efficient Knockdown of PTPN22 in T Lymphocytes. Bioconjugate Chemistry, 2009, 20, 427-431.	1.8	66
56	Cell-Type Specific and Cytoplasmic Targeting of PEGylated Carbon Nanotube-Based Nanoassemblies. Journal of Nanoscience and Nanotechnology, 2008, 8, 2259-2269.	0.9	33
57	Targeting Host Cell Furin Proprotein Convertases as a Therapeutic Strategy against Bacterial Toxins and Viral Pathogens*. Journal of Biological Chemistry, 2007, 282, 20847-20853.	1.6	93
58	Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity. Journal of Physics: Conference Series, 2007, 61, 95-98.	0.3	12
59	Luminescent Silica Nanobeads:Â Characterization and Evaluation as Efficient Cytoplasmatic Transporters for T-Lymphocytes. Journal of the American Chemical Society, 2007, 129, 7814-7823.	6.6	26
60	Noncovalently silylated carbon nanotubes decorated with quantum dots. Carbon, 2007, 45, 673-676.	5.4	10
61	Nanosynthesis by candlelight. Nature Nanotechnology, 2007, 2, 599-600.	15.6	36
62	Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. International Journal of Nanomedicine, 2007, 2, 227-33.	3.3	49
63	Dispersion of Pristine Single-walled Carbon Nanotubes in Water by a Thiolated Organosilane:Â Application in Supramolecular Nanoassemblies. Journal of Physical Chemistry B, 2006, 110, 13685-13688.	1.2	19
64	Isolation and Characterization of Fluorescent Nanoparticles from Pristine and Oxidized Electric Arc-Produced Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 831-836.	1.2	187
65	Adsorption of Streptavidin onto Single-Walled Carbon Nanotubes: Application in Fluorescent Supramolecular Nanoassemblies. Journal of Nanoscience and Nanotechnology, 2006, 6, 3693-3698.	0.9	6
66	Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicology Letters, 2006, 160, 121-126.	0.4	622
67	Full-Length Single-Walled Carbon Nanotubes Decorated with Streptavidin-Conjugated Quantum Dots as Multivalent Intracellular Fluorescent Nanoprobes. Biomacromolecules, 2006, 7, 2259-2263.	2.6	89
68	Non-destructive decoration of full-length multi-walled carbon nanotubes with variable amounts of silica gel nanoparticles. Carbon, 2006, 44, 1301-1303.	5.4	15
69	Synthesis and Characterization of Supramolecular Nanostructures of Carbon Nanotubes and Ruthenium-Complex Luminophores. Journal of Nanoscience and Nanotechnology, 2006, 6, 1381-1386.	0.9	25
70	Covalent decoration of multi-walled carbon nanotubes with silica nanoparticles. Chemical Communications, 2005, , 758.	2.2	104
71	Structural Stability of Azurin Encapsulated in Sol-Gel Glasses: A Fluorometric Study. Journal of Sol-Gel Science and Technology, 2004, 30, 205-214.	1.1	2
72	Conformation and stability of myoglobin in dilute and crowded organically modified media. Journal of Non-Crystalline Solids, 2004, 343, 101-108.	1.5	10

#	Article	IF	CITATIONS
73	Seasonal Pattern of Phototherapy: A Study in the Sardinian Population. Biological Rhythm Research, 2003, 34, 13-21.	0.4	1
74	Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	30