List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/203/publications.pdf Version: 2024-02-01

SANILIKTA DER

#	Article	IF	CITATIONS
1	In-vitro adhesive and interfacial analysis of a phosphorylated resin polyalkenoate cement bonded to dental hard tissues Journal of Dentistry, 2022, 118, 104050.	4.1	2
2	Magnetic Nanoparticles in Bone Tissue Engineering. Nanomaterials, 2022, 12, 757.	4.1	31
3	A multi-functional dentine bonding system combining a phosphate monomer with eugenyl methacrylate. Dental Materials, 2022, 38, 1030-1043.	3.5	3
4	A laboratory study to assess the formation of effluent volatile compounds and disinfection byâ€products during chemomechanical preparation of infected root canals and application of activated carbon for their removal. International Endodontic Journal, 2021, 54, 601-615.	5.0	3
5	Antimicrobials in Dentistry. Applied Sciences (Switzerland), 2021, 11, 3279.	2.5	5
6	Bis[2-(Methacryloyloxy) Ethyl] Phosphate as a Primer for Enamel and Dentine. Journal of Dental Research, 2021, 100, 1081-1089.	5.2	8
7	Dual Network Composites of Poly(vinyl alcohol)-Calcium Metaphosphate/Alginate with Osteogenic Ions for Bone Tissue Engineering in Oral and Maxillofacial Surgery. Bioengineering, 2021, 8, 107.	3.5	2
8	Ex vivo detection and quantification of apically extruded volatile compounds and disinfection by-products by SIFT-MS, during chemomechanical preparation of infected root canals. Dental Materials, 2020, 36, 257-269.	3.5	3
9	An in vitro assessment of the physical properties of manually- mixed and encapsulated glass-ionomer cements. BDJ Open, 2020, 6, 12.	2.1	14
10	Antimicrobial Effectiveness of Calcium Silicate Sealers against a Nutrient-Stressed Multispecies Biofilm. Journal of Clinical Medicine, 2020, 9, 2722.	2.4	12
11	Evaluation of the effects of polishing systems on surface roughness and morphology of dental composite resin. British Dental Journal, 2020, 228, 527-532.	0.6	17
12	Ex vivo investigations on bioinspired electrospun membranes as potential biomaterials for bone regeneration. Journal of Dentistry, 2020, 98, 103359.	4.1	17
13	In vitro bond strengths post thermal and fatigue load cycling of sapphire brackets bonded with self-etch primer and evaluation of enamel damage. Journal of Clinical and Experimental Dentistry, 2020, 12, e22-e30.	1.2	10
14	Resistance of bonded premolars to four artificial ageing models post enamel conditioning with a novel calcium-phosphate paste. Journal of Clinical and Experimental Dentistry, 2020, 12, e317-e326.	1.2	10
15	In vitro bond strengths post thermal and fatigue load cycling of sapphire brackets bonded with self-etch primer and evaluation of enamel damage. Journal of Clinical and Experimental Dentistry, 2020, 12, e22-e30.	1.2	5
16	Semi-interpenetrating network composites reinforced with Kevlar fibers for dental post fabrication. Dental Materials Journal, 2019, 38, 511-521.	1.8	11
17	A Novel Etchant System for Orthodontic Bracket Bonding. Scientific Reports, 2019, 9, 9579.	3.3	22
18	The effect of chelation of sodium alginate with osteogenic ions, calcium, zinc, and strontium. Journal of Biomaterials Applications, 2019, 34, 573-584.	2.4	36

#	Article	IF	CITATIONS
19	Dual polymer networks: a new strategy in expanding the repertoire of hydrogels for biomedical applications. Journal of Materials Science: Materials in Medicine, 2019, 30, 114.	3.6	8
20	The synthesis of nano silver-graphene oxide system and its efficacy against endodontic biofilms using a novel tooth model. Dental Materials, 2019, 35, 1614-1629.	3.5	47
21	Composite bone substitutes with osteogenic ions for oral and maxillofacial surgery. International Journal of Oral and Maxillofacial Surgery, 2019, 48, 55.	1.5	0
22	An integrated multifunctional hybrid cement (pRMGIC) for dental applications. Dental Materials, 2019, 35, 636-649.	3.5	6
23	Green synthetic routes to alginate-graphene oxide composite hydrogels with enhanced physical properties for bioengineering applications. European Polymer Journal, 2018, 103, 198-206.	5.4	58
24	Combinatorial design of calcium meta phosphate poly(vinyl alcohol) bone-like biocomposites. Journal of Materials Science: Materials in Medicine, 2018, 29, 128.	3.6	9
25	Evaluation of dental adhesive systems incorporating an antibacterial monomer eugenyl methacrylate (EgMA) for endodontic restorations. Dental Materials, 2017, 33, e239-e254.	3.5	27
26	The role of new zinc incorporated monetite cements on osteogenic differentiation of human mesenchymal stem cells. Materials Science and Engineering C, 2017, 78, 485-494.	7.3	26
27	Synthesis of irregular graphene oxide tubes using green chemistry and their potential use as reinforcement materials for biomedical applications. PLoS ONE, 2017, 12, e0185235.	2.5	33
28	Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells. Scientific Reports, 2016, 6, 30548.	3.3	27
29	Influence of a polymerizable eugenol derivative on the antibacterial activity and wettability of a resin composite for intracanal post cementation and core build-up restoration. Dental Materials, 2016, 32, 929-939.	3.5	37
30	A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration. Dental Materials, 2016, 32, 149-160.	3.5	14
31	Designing dapsone polymer conjugates for controlled drug delivery. Acta Biomaterialia, 2015, 27, 32-41.	8.3	16
32	New functional and aesthetic composite materials used as an alternative to traditional post materials for the restoration of endodontically treated teeth. Journal of Dentistry, 2015, 43, 1308-1315.	4.1	4
33	Biomaterials in Relation to Dentistry. Frontiers of Oral Biology, 2015, 17, 1-12.	1.5	20
34	An In Vitro Assessment of Gutta-Percha Coating of New Carrier-Based Root Canal Fillings. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	5
35	Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. Journal of the Royal Society Interface, 2014, 11, 20140727.	3.4	16
36	Evaluation of a β-Calcium Metaphosphate Bone Graft Containing Bone Morphogenetic Protein-7 in Rabbit Maxillary Defects. Journal of Periodontology, 2014, 85, 298-307.	3.4	9

#	Article	IF	CITATIONS
37	Tissue engineering technology and its possible applications in oral and maxillofacial surgery. British Journal of Oral and Maxillofacial Surgery, 2014, 52, 7-15.	0.8	42
38	In vitro osteoinductive potential of porous monetite for bone tissue engineering. Journal of Tissue Engineering, 2014, 5, 204173141453657.	5.5	49
39	A novel method of forming micro- and macroporous monetite cements. Journal of Materials Chemistry B, 2013, 1, 958-969.	5.8	46
40	Design and synthesis of three-dimensional hydrogel scaffolds for intervertebral disc repair. Journal of Materials Chemistry, 2012, 22, 10725.	6.7	12
41	Porosity, Micro-Hardness and Morphology of White and Gray Portland Cements in Relation to Their Potential in the Development of New Dental Filling Materials. Journal of Adhesion Science and Technology, 2012, 26, 19-26.	2.6	3
42	Phosphate based 2-hydroxyethyl methacrylate hydrogels for biomedical applications. Journal of Materials Chemistry, 2011, 21, 2237-2245.	6.7	24
43	Pre-warming of dental composites. Dental Materials, 2011, 27, e51-e59.	3.5	101
44	A porous scaffold for bone tissue engineering/45S5 Bioglass® derived porous scaffolds for co-culturing osteoblasts and endothelial cells. Journal of Materials Science: Materials in Medicine, 2010, 21, 893-905.	3.6	64
45	PMMA bone cement containing a quaternary amine comonomer with potential antibacterial properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 130-139.	3.4	22
46	Eugenol functionalized poly(acrylic acid) derivatives in the formation of glass-ionomer cements. Dental Materials, 2008, 24, 1709-1716.	3.5	25
47	Poly(acrylic acid) modified calcium phosphate cements: the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid. Journal of Materials Science: Materials in Medicine, 2007, 18, 1883-1888.	3.6	21
48	Development of high-viscosity, two-paste bioactive bone cements. Biomaterials, 2005, 26, 3713-3718.	11.4	57
49	The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement. Journal of Materials Science: Materials in Medicine, 2004, 15, 413-418.	3.6	27
50	A novel acrylic copolymer for a poly(alkenoate) glass-ionomer cement. Journal of Materials Science: Materials in Medicine, 2003, 14, 575-581.	3.6	10
51	Effect of molecular weight and concentration of poly(acrylic acid) on the formation of a polymeric calcium phosphate cement. Journal of Materials Science: Materials in Medicine, 2003, 14, 747-752.	3.6	24
52	A comparative study of the properties of dental resin composites polymerized with plasma and halogen light. Dental Materials, 2003, 19, 517-522.	3.5	50
53	Fatigue and fracture toughness of acrylic bone cements modified with long-chain amine activators. Journal of Biomedical Materials Research Part B, 2003, 67A, 571-577.	3.1	13
54	The effect of curing with plasma light on the shrinkage of dental restorative materials. Journal of Oral Rehabilitation, 2003, 30, 723-728.	3.0	7

#	Article	IF	CITATIONS
55	Radiopacity in bone cements using an organo-bismuth compound. Biomaterials, 2002, 23, 3387-3393.	11.4	66
56	The effect of cross-linking agents on acrylic bone cements containing radiopacifiers. Biomaterials, 2001, 22, 2177-2181.	11.4	37
57	Physicochemical characterization of hydrogels based on polyvinyl alcohol-vinyl acetate blends. Journal of Applied Polymer Science, 2001, 82, 3578-3590.	2.6	11
58	The effect of strontium oxide in glass-ionomer cements. Journal of Materials Science: Materials in Medicine, 1999, 10, 471-474.	3.6	36
59	Water absorption characteristics and cytotoxic and biological evaluation of bone cements formulated with a novel activator. , 1999, 48, 719-725.		20