Svjetlana Miocinovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2029743/publications.pdf Version: 2024-02-01

SVIETIANA MIOCINOVIC

#	Article	IF	CITATIONS
1	History, Applications, and Mechanisms of Deep Brain Stimulation. JAMA Neurology, 2013, 70, 163.	9.0	420
2	Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 2004, 15, 1137-1140.	1.2	318
3	Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing. Journal of Neural Engineering, 2018, 15, 046006.	3.5	299
4	Computational Analysis of Subthalamic Nucleus and Lenticular Fasciculus Activation During Therapeutic Deep Brain Stimulation. Journal of Neurophysiology, 2006, 96, 1569-1580.	1.8	284
5	Mechanisms and Targets of Deep Brain Stimulation in Movement Disorders. Neurotherapeutics, 2008, 5, 294-308.	4.4	258
6	Gamma Oscillations in the Hyperkinetic State Detected with Chronic Human Brain Recordings in Parkinson's Disease. Journal of Neuroscience, 2016, 36, 6445-6458.	3.6	252
7	<i>In vivo</i> impedance spectroscopy of deep brain stimulation electrodes. Journal of Neural Engineering, 2009, 6, 046001.	3.5	194
8	Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Experimental Neurology, 2009, 216, 166-176.	4.1	153
9	Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans. Journal of Neuroscience, 2018, 38, 9129-9141.	3.6	118
10	Pallidal Deep-Brain Stimulation Disrupts Pallidal Beta Oscillations and Coherence with Primary Motor Cortex in Parkinson's Disease. Journal of Neuroscience, 2018, 38, 4556-4568.	3.6	114
11	Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clinical Neurophysiology, 2010, 121, 2128-2133.	1.5	111
12	Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. Journal of Neurosurgery, 2018, 128, 605-616.	1.6	110
13	Pallidal burst activity during therapeutic deep brain stimulation. Experimental Neurology, 2008, 211, 243-251.	4.1	82
14	Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease. Neurobiology of Disease, 2016, 86, 177-186.	4.4	82
15	Subthalamic local field potentials in Parkinson's disease and isolated dystonia: An evaluation of potential biomarkers. Neurobiology of Disease, 2016, 89, 213-222.	4.4	81
16	Stereotactic neurosurgical planning, recording, and visualization for deep brain stimulation in non-human primates. Journal of Neuroscience Methods, 2007, 162, 32-41.	2.5	68
17	Automated gait and balance parameters diagnose and correlate with severity in Parkinson disease. Journal of the Neurological Sciences, 2014, 345, 131-138.	0.6	68
18	Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. Journal of Neurosurgery, 2017, 126, 122-131.	1.6	56

Svjetlana Miocinovic

#	Article	IF	CITATIONS
19	Computational analysis of deep brain stimulation. Expert Review of Medical Devices, 2007, 4, 615-622.	2.8	54
20	Patterns of Cortical Synchronization in Isolated Dystonia Compared With Parkinson Disease. JAMA Neurology, 2015, 72, 1244.	9.0	53
21	Task-related activity in sensorimotor cortex in Parkinson's disease and essential tremor: changes in beta and gamma bands. Frontiers in Human Neuroscience, 2015, 9, 512.	2.0	48
22	Outcomes, management, and potential mechanisms of interleaving deep brain stimulation settings. Parkinsonism and Related Disorders, 2014, 20, 1434-1437.	2.2	40
23	Dissociation of motor symptoms during deep brain stimulation of the subthalamic nucleus in the region of the internal capsule. Experimental Neurology, 2011, 228, 294-297.	4.1	37
24	Recommendations for Deep Brain Stimulation Device Management During a Pandemic. Journal of Parkinson's Disease, 2020, 10, 903-910.	2.8	36
25	Neurofeedback Control in Parkinsonian Patients Using Electrocorticography Signals Accessed Wirelessly With a Chronic, Fully Implanted Device. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1715-1724.	4.9	34
26	Effect of levodopa on electroencephalographic biomarkers of the parkinsonian state. Journal of Neurophysiology, 2019, 122, 290-299.	1.8	34
27	Cerebellar Deep Brain Stimulation for Acquired Hemidystonia. Movement Disorders Clinical Practice, 2020, 7, 188-193.	1.5	34
28	Automated Deep Brain Stimulation Programming for Tremor. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 1618-1625.	4.9	30
29	Cortical gamma oscillations in isolated dystonia. Parkinsonism and Related Disorders, 2018, 49, 104-105.	2.2	27
30	Sensitivity of temporal excitation properties to the neuronal element activated by extracellular stimulation. Journal of Neuroscience Methods, 2004, 132, 91-99.	2.5	26
31	Temporal excitation properties of paresthesias evoked by thalamic microstimulation. Clinical Neurophysiology, 2005, 116, 1227-1234.	1.5	24
32	Surgical Treatment of Parkinson's Disease: Devices and Lesion Approaches. Neurotherapeutics, 2020, 17, 1525-1538.	4.4	24
33	Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation, 2021, 14, 549-563.	1.6	23
34	Chronic deep brain stimulation normalizes scalp EEG activity in isolated dystonia. Clinical Neurophysiology, 2018, 129, 368-376.	1.5	22
35	Slow Wave Sleep and EEG Delta Spectral Power are Associated with Cognitive Function in Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 703-714.	2.8	20
36	Multi-objective data-driven optimization for improving deep brain stimulation in Parkinson's disease. Journal of Neural Engineering, 2021, 18, 046046.	3.5	20

#	Article	IF	CITATIONS
37	Comparison of Globus Pallidus Interna and Subthalamic Nucleus in Deep Brain Stimulation for Parkinson Disease: An Institutional Experience and Review. Parkinson's Disease, 2017, 2017, 1-15.	1.1	18
38	Interictal high-frequency oscillations (HFOs) as predictors of high frequency and conventional seizure onset zones. Epileptic Disorders, 2015, 17, 413-424.	1.3	15
39	Pallidal thermolesion unleashes gamma oscillations in the motor cortex in Parkinson's disease. Movement Disorders, 2019, 34, 903-911.	3.9	13
40	Neuromyelitis Optica Spectrum Disorder Associated With Autoimmune Hemolytic Anemia and Lymphoma. Neurologist, 2015, 20, 33-34.	0.7	12
41	Clinical outcomes of globus pallidus deep brain stimulation for Parkinson disease: a comparison of intraoperative MRIâ€" and MER-guided lead placement. Journal of Neurosurgery, 2021, 134, 1072-1082.	1.6	11
42	Letter: Evaluation and Surgical Treatment of Functional Neurosurgery Patients With Implanted Deep Brain Stimulation and Vagus Nerve Stimulation Pulse Generators During the COVID-19 Pandemic. Neurosurgery, 2020, 87, E222-E226.	1.1	8
43	Cystic Lesions as a Rare Complication of Deep Brain Stimulation. Movement Disorders Clinical Practice, 2016, 3, 87-90.	1.5	7
44	Novel approaches for quantifying beta synchrony in Parkinson's disease. Experimental Brain Research, 2022, 240, 991-1004.	1.5	7
45	Towards automated patient-specific optimization of deep brain stimulation for movement disorders. , 2019, 2019, 6159-6162.		6
46	Patient-Reported Outcomes Measurement Information System (PROMIS) Assessment of Non-Motor Features in Deep Brain Stimulation Candidates: Relationship to the Beck Depression and Anxiety Inventories. Archives of Clinical Neuropsychology, 2021, 36, 632-637.	0.5	5
47	Beyond the Basal Ganglia. JAMA Neurology, 2014, 71, 8.	9.0	4
48	Clinical Tremor Severity Estimation Using an Instrumented Eating Utensil. Journal of Parkinson's Disease, 2017, 7, 755-759.	2.8	3
49	Mechanisms of Deep Brain Stimulation. , 2008, , 151-177.		3
50	Combined occurrence of deleterious TOR1A and ANO3 variants in isolated generalized dystonia. Parkinsonism and Related Disorders, 2020, 73, 55-56.	2.2	1