
Valeriy Shklovskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2029233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnon-phonon interactions in spin insulators. Low Temperature Physics, 2021, 47, 621-645.	0.6	0
2	Heat transport in insulator/ferromagnetic-insulator/insulator heterogeneous nanostructures at low temperatures. Physical Review B, 2021, 103, .	3.2	0
3	Reduction of Microwave Loss by Mobile Fluxons in Grooved Nb Films. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800223.	2.4	16
4	Local flux-flow instability in superconducting films near <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>c</mml:mi> Physical Review B, 2019, 99, .</mml:msub></mml:math 	⊳ <td>ubss/mml:ma</td>	ub s s/mml:ma
5	Spin Seebeck effect and phonon energy transfer in heterostructures containing layers of a normal metal and a ferromagnetic insulator. Physical Review B, 2019, 99, .	3.2	5
6	Magnon–fluxon interaction in a ferromagnet/superconductor heterostructure. Nature Physics, 2019, 15, 477-482.	16.7	83
7	Temperature dependence of the magnon-phonon energy relaxation time in a ferromagnetic insulator. Physical Review B, 2019, 100, .	3.2	10
8	Radiofrequency generation by coherently moving fluxons. Applied Physics Letters, 2018, 112, .	3.3	28
9	Microwave emission from superconducting vortices in Mo/Si superlattices. Nature Communications, 2018, 9, 4927.	12.8	46
10	Role of magnons and the size effect in heat transport through an insulating ferromagnet/insulator interface. Physical Review B, 2018, 98, .	3.2	11
11	Nonlinear relaxation between magnons and phonons in insulating ferromagnets. Physical Review B, 2018, 98, .	3.2	9
12	Hot electrons in metal films at low temperatures (Review). Low Temperature Physics, 2018, 44, 165-183.	0.6	1
13	Kinetics of electron cooling in metal films at low temperatures and revision of the two-temperature model. Journal of Physics Condensed Matter, 2018, 30, 295001.	1.8	8
14	Mobile fluxons as coherent probes of periodic pinning in superconductors. Scientific Reports, 2017, 7, 13740.	3.3	39
15	Pinning effects on hot-electron vortex flow instability in superconducting films. Physica C: Superconductivity and Its Applications, 2017, 538, 20-26.	1.2	7
16	Pinning effects on flux flow instability in epitaxial Nb thin films. Superconductor Science and Technology, 2017, 30, 085002.	3.5	19
17	Zero-Bias Shapiro Steps in Asymmetric Pinning Nanolandscapes. Journal of Superconductivity and Novel Magnetism, 2017, 30, 735-741.	1.8	5

Pinning effects on self-heating and flux-flow instability in superconducting films near <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>T </mml:mi> <mml:mi>c </mml:mi> </ranzl:msub19/mml:ma Physical Review B, 2017, 95, .

VALERIY SHKLOVSKIY

#	Article	IF	CITATIONS
19	The role of conduction electrons in the formation of thermal boundary resistance of the metal-dielectric interface and resistivity of metal films, at low temperatures (Review Article). Low Temperature Physics, 2016, 42, 636-660.	0.6	7
20	High-frequency large-amplitude oscillations of a non-isothermal N/S boundary. Low Temperature Physics, 2016, 42, 905-915.	0.6	0
21	Interplay of flux guiding and Hall effect in Nb films with nanogrooves. Superconductor Science and Technology, 2016, 29, 065009.	3.5	9
22	Alternating current-driven microwave loss modulation in a fluxonic metamaterial. Applied Physics Letters, 2015, 107, .	3.3	35
23	Guided vortex motion and ratchet effect in an anisotropic superconductor with a periodic pinning potential. Low Temperature Physics, 2014, 40, 1048-1057.	0.6	2
24	Stochastic resonance of vortices in a washboard pinning potential. Physica C: Superconductivity and Its Applications, 2014, 503, 128-131.	1.2	1
25	Vortex ratchet reversal in an asymmetric washboard pinning potential subject to combined dc and ac stimuli. Journal of Physics Condensed Matter, 2014, 26, 025703.	1.8	27
26	Energy relaxation times in metal films from the response of electrical conductivity to periodic heating. Physical Review B, 2014, 89, .	3.2	6
27	DC to AC converter on Abrikosov vortices in a washboard pinning potential. Journal of Physics: Conference Series, 2014, 507, 012007.	0.4	Ο
28	Noise-Assisted Microwave Up-conversion by Vortices in Thin-Film Superconductors with a dc-Biased Washboard Pinning Potential. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2079-2083.	1.8	1
29	Determination of coordinate dependence of a pinning potential from a microwave experiment with vortices. Low Temperature Physics, 2013, 39, 120-124.	0.6	4
30	Material composition – Pinning strength correlation in Nb thin films with focused ion beam-milled washboard nanostructures. Physica C: Superconductivity and Its Applications, 2013, 494, 102-105.	1.2	1
31	Dynamics of electron temperature and the relaxation times of electron–phonon system of a metal film. Low Temperature Physics, 2013, 39, 357-364.	0.6	7
32	Nonadiabatic ratchet effect in superconducting films with a tilted cosine pinning potential. Journal of Physics: Conference Series, 2012, 400, 022108.	0.4	0
33	Current-controlled Filter on Superconducting Films with a Tilted Washboard Pinning Potential. Physics Procedia, 2012, 36, 9-12.	1.2	1
34	Electrical transport and pinning properties of Nb thin films patterned with focused ion beam-milled washboard nanostructures. New Journal of Physics, 2012, 14, 113027.	2.9	39
35	Fabrication of Artificial Washboard Pinning Structures in Thin Niobium Films. Journal of Superconductivity and Novel Magnetism, 2011, 24, 375-380.	1.8	14
36	Vortex lattice matching effects in a washboard pinning potential induced by Co nanostripe arrays. Physica C: Superconductivity and Its Applications, 2011, 471, 449-452.	1.2	27

VALERIY SHKLOVSKIY

#	Article	IF	CITATIONS
37	Frequency-dependent ratchet effect in superconducting films with a tilted washboard pinning potential. Physical Review B, 2011, 84, .	3.2	36
38	Anisotropic magnetoresistive response in thin Nb films decorated by an array of Co stripes. Superconductor Science and Technology, 2010, 23, 125014.	3.5	33
39	The Hall effect and microwave absorption by vortices in an anisotropic superconductor with a periodic pinning potential. Low Temperature Physics, 2010, 36, 71-80.	0.6	6
40	Guiding of vortices and ratchet effect in superconducting films with asymmetric pinning potential. Physical Review B, 2009, 80, .	3.2	18
41	Nonlinear two-dimensional frequency- and temperature-dependent vortex dynamics in a tilted washboard pinning potential. Journal of Physics: Conference Series, 2009, 150, 052241.	0.4	1
42	Nonlinear two-dimensional temperature-dependent impedance and the ac power absorption by vortices in a tilted washboard pinning potential. Journal of Physics: Conference Series, 2009, 150, 052240.	0.4	1
43	ac-driven vortices and the Hall effect in a superconductor with a tilted washboard pinning potential. Physical Review B, 2008, 78, .	3.2	40
44	Guiding of vortices under competing isotropic and anisotropic pinning conditions: Theory and experiment. Physical Review B, 2007, 76, .	3.2	35
45	Influence of point-like disorder on the guiding of vortices in anisotropic superconductors. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1257-1258.	1.2	0
46	Influence of point-like disorder on the guiding of vortices in a rotating current scheme. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1253-1254.	1.2	1
47	Influence of pointlike disorder on the guiding of vortices and the Hall effect in a washboard planar pinning potential. Physical Review B, 2006, 74, .	3.2	30
48	Guiding of Vortices and New Voltages in Ratchet Washboard Pinning Potential. AIP Conference Proceedings, 2006, , .	0.4	2
49	New Hall Resistivity Scaling Relations in the Presence of Competition between Point-like and Anisotropic Planar Pinning Potential. Journal of Low Temperature Physics, 2005, 139, 289-297.	1.4	5
50	Title is missing!. Journal of Low Temperature Physics, 2003, 131, 899-905.	1.4	5
51	Title is missing!. Journal of Low Temperature Physics, 2003, 130, 407-414.	1.4	4
52	New Hall voltages in a planar pinning potential. Physica C: Superconductivity and Its Applications, 2003, 388-389, 655-656.	1.2	3
53	Guided vortex motion in Nb films on facetted substrate surfaces. Physica C: Superconductivity and Its Applications, 2003, 388-389, 773-774.	1.2	5
54	Odd resistive response in superconductors with bianisotropic pinning. Low Temperature Physics, 2003, 29, 16-29.	0.6	1

VALERIY SHKLOVSKIY

#	Article	IF	CITATIONS
55	Guiding of vortices and the Hall conductivity scaling in a bianisotropic planar pinning potential. Physical Review B, 2002, 65, .	3.2	15
56	Anisotropy of the critical current and the guided motion of vortices in a stochastic model of bianisotropic pinning. I. Theoretical model. Low Temperature Physics, 2002, 28, 254-259.	0.6	4
57	Anisotropy of the critical current and the guided motion of vortices in a stochastic model of bianisotropic pinning. II. Observed effects. Low Temperature Physics, 2002, 28, 312.	0.6	1
58	Nonlinear mixed-state longitudinal and transverse resistivities of superconductors with anisotropic pinning—a phenomenological approach. Low Temperature Physics, 1999, 25, 109-114.	0.6	6
59	Experimental observation of a new galvanomagnetic effect in YBaCuO single crystals with unidirected twins. Superconductor Science and Technology, 1998, 11, 1133-1136.	3.5	3
60	Resistivity investigations of plastic vortex creep inYBa2Cu3O6.95crystals. Physical Review B, 1998, 58, 2445-2447.	3.2	40
61	Anisotropic pinning and the mixed-state galvanothermomagnetic properties of superconductors—a phenomenological approach. Low Temperature Physics, 1997, 23, 853-856.	0.6	8
62	Pinning and dynamics of magnetic flux in YBaCuO single crystals for vortex motion along twin boundaries. Low Temperature Physics, 1997, 23, 962-967.	0.6	49
63	Temperature dependence and anisotropy due to twin planes of the critical current inab-plane. European Physical Journal D, 1996, 46, 1771-1772.	0.4	Ο
64	Mixed state odd Hall effect in YBa2Cu3O7?? with unidirectional twins. Journal of Low Temperature Physics, 1996, 105, 963-968.	1.4	4
65	Nonlinear resonance study of the periodic motion of the explosive crystallization front in glasses. Physical Review B, 1996, 53, 3095-3106.	3.2	5
66	Brownian motion of particles in 1D arbitrary periodic potentials near a phase transition point. Journal of Physics A, 1994, 27, 5043-5051.	1.6	7
67	Thermal domains in inhomogeneous current-carrying superconductors. Current-voltage characteristics and dynamics of domain formation after current jumps. Journal of Low Temperature Physics, 1984, 57, 227-247.	1.4	14
68	Hot electrons in metals at low temperatures. Journal of Low Temperature Physics, 1980, 41, 375-396.	1.4	22