Erik Ortel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2029205/publications.pdf

Version: 2024-02-01

35	1,082	17 h-index	33
papers	citations		g-index
35	35	35	1739
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mesoporous IrO ₂ Films Templated by PEO-PB-PEO Block-Copolymers: Self-Assembly, Crystallization Behavior, and Electrocatalytic Performance. Chemistry of Materials, 2011, 23, 3201-3209.	6.7	154
2	Iridium Oxide Coatings with Templated Porosity as Highly Active Oxygen Evolution Catalysts: Structureâ€Activity Relationships. ChemSusChem, 2015, 8, 1908-1915.	6.8	112
3	New Triblock Copolymer Templates, PEOâ€PBâ€PEO, for the Synthesis of Titania Films with Controlled Mesopore Size, Wall Thickness, and Bimodal Porosity. Small, 2012, 8, 298-309.	10.0	96
4	Dimensionally Stable Ru/Ir/TiO ₂ -Anodes with Tailored Mesoporosity for Efficient Electrochemical Chlorine Evolution. ACS Catalysis, 2013, 3, 1324-1333.	11.2	88
5	Supported Mesoporous and Hierarchical Porous Pd/TiO ₂ Catalytic Coatings with Controlled Particle Size and Pore Structure. Chemistry of Materials, 2012, 24, 3828-3838.	6.7	81
6	Electrocatalysis Using Porous Nanostructured Materials. ChemPhysChem, 2012, 13, 1385-1394.	2.1	72
7	Micelle-Templated Oxides and Carbonates of Zinc, Cobalt, and Aluminum and a Generalized Strategy for Their Synthesis. Chemistry of Materials, 2013, 25, 2749-2758.	6.7	47
8	New Approach on Quantification of Porosity of Thin Films via Electron-Excited X-ray Spectra. Analytical Chemistry, 2016, 88, 7083-7090.	6.5	41
9	Micelleâ€Templated Mesoporous Films of Magnesium Carbonate and Magnesium Oxide. Advanced Materials, 2012, 24, 3115-3119.	21.0	40
10	Antireflective Coatings with Adjustable Refractive Index and Porosity Synthesized by Micelle-Templated Deposition of MgF ₂ Sol Particles. ACS Applied Materials & amp; Interfaces, 2014, 6, 19559-19565.	8.0	31
11	Oxygen Evolution Catalysts Based on Ir–Ti Mixed Oxides with Templated Mesopore Structure: Impact of Ir on Activity and Conductivity. ChemSusChem, 2018, 11, 2367-2374.	6.8	29
12	Influence of steel composition and pre-treatment conditions on morphology and microstructure of TiO2 mesoporous layers produced by dip coating on steel substrates. Thin Solid Films, 2009, 518, 27-35.	1.8	26
13	Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles. Scientific Reports, 2020, 10, 18910.	3. 3	26
14	Influence of steel substrate roughness on morphology and mesostructure of TiO2 porous layers produced by template-assisted dip coating. Microporous and Mesoporous Materials, 2010, 127, 17-24.	4.4	25
15	Synthesis and OER activity of NiO coatings with micelle–templated mesopore structure. ChemistrySelect, 2016, 1, 482-489.	1.5	24
16	Mesoporous titania films with adjustable pore size coated on stainless steel substrates. Materials Research Bulletin, 2009, 44, 2222-2227.	5.2	18
17	Template-Assisted Electrostatic Spray Deposition as a New Route to Mesoporous, Macroporous, and Hierarchically Porous Oxide Films. Langmuir, 2011, 27, 1972-1977.	3 . 5	17
18	Tailored mesoporous Ir/TiOx: Identification of structure-activity relationships for an efficient oxygen evolution reaction. Journal of Catalysis, 2019, 376, 209-218.	6.2	16

#	Article	IF	CITATIONS
19	Electrochemically dealloyed platinum with hierarchical pore structure as highly active catalytic coating. Catalysis Science and Technology, 2015, 5, 206-216.	4.1	14
20	Shape engineered TiO $<$ sub $>$ 2 $<$ /sub $>$ nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies. RSC Advances, 2016, 6, 70501-70509.	3.6	14
21	Ellipsometric porosimetry on pore-controlled TiO2 layers. Applied Surface Science, 2017, 421, 487-493.	6.1	14
22	Soft-templated mesoporous RuPt/C coatings with enhanced activity in the hydrogen evolution reaction. Journal of Catalysis, 2017, 355, 110-119.	6.2	14
23	Inâ€depth structural and chemical characterization of engineered TiO ₂ films. Surface and Interface Analysis, 2016, 48, 664-669.	1.8	13
24	Prototyping of catalyst pore-systems by a combined synthetic, analytical and computational approach: Application to mesoporous TiO2. Chemical Engineering Journal, 2014, 248, 49-62.	12.7	12
25	Versatile control over size and spacing of small mesopores in metal oxide films and catalytic coatings via templating with hyperbranched core–multishell polymers. Journal of Materials Chemistry A, 2014, 2, 13075-13082.	10.3	11
26	Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst. Applied Catalysis A: General, 2015, 493, 25-32.	4.3	10
27	Nafionâ€Free Carbonâ€Supported Electrocatalysts with Superior Hydrogen Evolution Reaction Performance by Soft Templating. ChemElectroChem, 2017, 4, 221-229.	3.4	10
28	Mechanical behavior of mesoporous titania thin films. Applied Physics Letters, 2014, 104, .	3.3	9
29	Control of functionalization of supports for subsequent assembly of <scp>t</scp> itania nanoparticle films. Surface and Interface Analysis, 2018, 50, 1200-1206.	1.8	5
30	Organic surface modification and analysis of titania nanoparticles for selfâ€assembly in multiple layers. Surface and Interface Analysis, 2020, 52, 829-834.	1.8	5
31	Improved Spatial Resolution of EDX/SEM for the Elemental Analysis of Nanoparticles. Microscopy and Microanalysis, 2015, 21, 1713-1714.	0.4	3
32	Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization. Advanced Engineering Materials, 2022, 24, 2101347.	3.5	3
33	Inside Cover: Electrocatalysis Using Porous Nanostructured Materials (ChemPhysChem 6/2012). ChemPhysChem, 2012, 13, 1366-1366.	2.1	1
34	Analysis of Fluorine Traces in TiO ₂ Nanoplatelets by SEM/EDX, AES and TOF-SIMS. Microscopy and Microanalysis, 2017, 23, 1908-1909.	0.4	1
35	Organic Surface Modification and Analysis of Titania Nanoparticles for Self-Assembly in Multiple Layers. Microscopy and Microanalysis, 2017, 23, 1872-1873.	0.4	0