David J Edmonds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2028741/publications.pdf

Version: 2024-02-01

16 papers	519 citations	687363 13 h-index	17 g-index
18	18	18	832 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-1 Receptor. Journal of Medicinal Chemistry, 2022, 65, 8208-8226.	6.4	42
2	Predicting the Human Hepatic Clearance of Acidic and Zwitterionic Drugs. Journal of Medicinal Chemistry, 2020, 63, 11831-11844.	6.4	14
3	Optimizing the Benefit/Risk of Acetyl-CoA Carboxylase Inhibitors through Liver Targeting. Journal of Medicinal Chemistry, 2020, 63, 10879-10896.	6.4	19
4	Optimization of Metabolic and Renal Clearance in a Series of Indole Acid Direct Activators of $5\hat{a}\in^2$ -Adenosine Monophosphate-Activated Protein Kinase (AMPK). Journal of Medicinal Chemistry, 2018, 61, 2372-2383.	6.4	13
5	Acyl Glucuronide Metabolites of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1 <i>H</i> indole-3-carboxylic Acid (PF-06409577) and Related Indole-3-carboxylic Acid Derivatives are Direct Activators of Adenosine Monophosphate-Activated Protein Kinase (AMPK), lournal of Medicinal Chemistry, 2018, 61, 7273-7288.	6.4	18
6	Evolution of the Synthesis of AMPK Activators for the Treatment of Diabetic Nephropathy: From Three Preclinical Candidates to the Investigational New Drug PF-06409577. Organic Process Research and Development, 2018, 22, 681-696.	2.7	10
7	Selective Activation of AMPK <i>\hat{l}^2</i> 1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 303-311.	2.5	66
8	Helixconstraints and amino acid substitution in GLP-1 increase cAMP and insulin secretion but not beta-arrestin 2 signaling. European Journal of Medicinal Chemistry, 2017, 127, 703-714.	5.5	19
9	Truncated Glucagon-like Peptide-1 and Exendin-4 \hat{l} ±-Conotoxin pl14a Peptide Chimeras Maintain Potency and \hat{l} ±-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro. Journal of Biological Chemistry, 2016, 291, 15778-15787.	3.4	10
10	Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1 <i>H</i> i-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy. Journal of Medicinal Chemistry, 2016, 59, 8068-8081.	6.4	98
11	Short Hydrophobic Peptides with Cyclic Constraints Are Potent Glucagon-like Peptide-1 Receptor (GLP-1R) Agonists. Journal of Medicinal Chemistry, 2015, 58, 4080-4085.	6.4	38
12	Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists. European Journal of Medicinal Chemistry, 2015, 103, 175-184.	5.5	20
13	Cyclic Penta- and Hexaleucine Peptides without $\langle i \rangle N \langle i \rangle$ -Methylation Are Orally Absorbed. ACS Medicinal Chemistry Letters, 2014, 5, 1148-1151.	2.8	55
14	Oral GLP-1 Modulators for the Treatment of Diabetes. Annual Reports in Medicinal Chemistry, 2013, 48, 119-130.	0.9	10
15	Spirolactam-Based Acetyl-CoA Carboxylase Inhibitors: Toward Improved Metabolic Stability of a Chromanone Lead Structure. Journal of Medicinal Chemistry, 2013, 56, 7110-7119.	6.4	40
16	Synthesis of 7-Oxo-dihydrospiro[indazole-5,4′-piperidine] Acetyl-CoA Carboxylase Inhibitors. Journal of Organic Chemistry, 2012, 77, 1497-1506.	3.2	18