## Giacomo Traini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2028627/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                     | IF                               | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|
| 1  | First ex vivo validation of a radioguided surgery technique with <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif"<br/>overflow="scroll"&gt;<mml:mrow><mml:mi>β</mml:mi></mml:mrow>-radiation Physica<br/>Medica, 2016, 32, 1139-1144.</mml:math<br>                                                                                             | 0.4                              | 30        |
| 2  | Secondary radiation measurements for particle therapy applications: prompt photons produced<br>by <sup>4</sup> He, <sup>12</sup> C and <sup>16</sup> O ion beams in a PMMA target. Physics in Medicine<br>and Biology, 2017, 62, 1438-1455.                                                                                                                                 | 1.6                              | 30        |
| 3  | Radioguided surgery with $\hat{I}^2$ radiation: a novel application with Ga68. Scientific Reports, 2018, 8, 16171.                                                                                                                                                                                                                                                          | 1.6                              | 28        |
| 4  | Design of a new tracking device for on-line beam range monitor in carbon therapy. Physica Medica, 2017, 34, 18-27.                                                                                                                                                                                                                                                          | 0.4                              | 25        |
| 5  | MONDO: a neutron tracker for particle therapy secondary emission characterisation. Physics in Medicine and Biology, 2017, 62, 3299-3312.                                                                                                                                                                                                                                    | 1.6                              | 25        |
| 6  | Feasibility of beta-particle radioguided surgery for a variety of "nuclear medicine―radionuclides.<br>Physica Medica, 2017, 43, 127-133.                                                                                                                                                                                                                                    | 0.4                              | 24        |
| 7  | Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection. Frontiers in<br>Oncology, 2016, 6, 177.                                                                                                                                                                                                                                                      | 1.3                              | 23        |
| 8  | Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by <sup>4</sup> He ion beams in a PMMA target. Physics in Medicine and Biology, 2017, 62, 1291-1309.                                                                                                                                                                     | 1.6                              | 23        |
| 9  | Review and performance of the Dose Profiler, a particle therapy treatments online monitor. Physica<br>Medica, 2019, 65, 84-93.                                                                                                                                                                                                                                              | 0.4                              | 19        |
| 10 | Secondary radiation measurements for particle therapy applications: charged particles produced<br>by <sup>4</sup> He and <sup>12</sup> C ion beams in a PMMA target at large angle. Physics in Medicine<br>and Biology, 2018, 63, 055018.                                                                                                                                   | 1.6                              | 16        |
| 11 | Detection of Interfractional Morphological Changes in Proton Therapy: A Simulation and In Vivo<br>Study With the INSIDE In-Beam PET. Frontiers in Physics, 2021, 8, .                                                                                                                                                                                                       | 1.0                              | 16        |
| 12 | Characterisation of a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si4.svg"&gt;<mml:mrow><mml:mi>î²</mml:mi></mml:mrow></mml:math> detector on positron<br>emitters for medical applications. Physica Medica, 2019, 67, 85-90.                                                                                                                   | 0.4                              | 15        |
| 13 | Prompt-γ production of 220 MeV/u <sup>12</sup> C ions interacting with a PMMA target. Journal of Instrumentation, 2015, 10, P10034-P10034.                                                                                                                                                                                                                                  | 0.5                              | 14        |
| 14 | The <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:mrow><mml:msup><mml:mrow><mml:mi>î²</mml:mi></mml:mrow><mml:mrow><m<br>radio-guided surgery: Method to estimate the minimum injectable activity from ex-vivo test. Physica<br/>Medica, 2019, 58, 114-120.</m<br></mml:mrow></mml:msup></mml:mrow></mml:math> | ml:mo>- </td <td>mml;mo&gt;</td> | mml;mo>   |
| 15 | Inter-fractional monitoring of \$\$^{12}\$\$C ions treatments: results from a clinical trial at the CNAO facility. Scientific Reports, 2020, 10, 20735.                                                                                                                                                                                                                     | 1.6                              | 13        |
| 16 | Intraoperative probe detecting βâ^' decays in brain tumour radio-guided surgery. Nuclear Instruments<br>and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2017, 845, 689-692.                                                                                                                                 | 0.7                              | 10        |
| 17 | Benchmarking Geant4 hadronic models for prompt―γ monitoring in carbon ionÂtherapy. Medical Physics,<br>2017, 44, 4276-4286.                                                                                                                                                                                                                                                 | 1.6                              | 10        |
|    | Tumor-non-tumor discrimination by a <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>                                                                                                                                                                                                                                       |                                  |           |

altimg="si1.svg"><mml:mrow><mml:msup><mml:mrow><mml:mi>l<sup>2</sup></mml:mi>/mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mm

GIACOMO TRAINI

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ion charge separation with new generation of nuclear emulsion films. Open Physics, 2019, 17, 233-240.                                                                                                                                                                        | 0.8 | 9         |
| 20 | Monitoring Carbon Ion Beams Transverse Position Detecting Charged Secondary Fragments: Results<br>From Patient Treatment Performed at CNAO. Frontiers in Oncology, 2021, 11, 601784.                                                                                         | 1.3 | 9         |
| 21 | Design of a tracking device for on-line dose monitoring in hadrontherapy. Nuclear Instruments and<br>Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2017, 845, 679-683.                                         | 0.7 | 8         |
| 22 | Development and characterization of aî"E-TOF detector prototype for the FOOT experiment. Nuclear<br>Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and<br>Associated Equipment, 2019, 916, 116-124.                          | 0.7 | 8         |
| 23 | Radioguided surgery with βâ^' radiation in pancreatic Neuroendocrine Tumors: a feasibility study.<br>Scientific Reports, 2020, 10, 4015.                                                                                                                                     | 1.6 | 8         |
| 24 | Use of a CMOS image sensor for beta-emitting radionuclide measurements. Journal of Instrumentation, 2018, 13, P07003-P07003.                                                                                                                                                 | 0.5 | 7         |
| 25 | Development of a novel neutron tracker for the characterisation of secondary neutrons emitted in<br>Particle Therapy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,<br>Spectrometers, Detectors and Associated Equipment, 2020, 958, 162862. | 0.7 | 7         |
| 26 | Charge identification of fragments with the emulsion spectrometer of the FOOT experiment. Open Physics, 2021, 19, 383-394.                                                                                                                                                   | 0.8 | 6         |
| 27 | Addendum: Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u<br><sup>12</sup> C beam. Physics in Medicine and Biology, 2017, 62, 8483-8494.                                                                                                          | 1.6 | 5         |
| 28 | The MONDO Detector Prototype Development and Test: Steps Toward an SPAD-CMOS-Based Integrated Readout (SBAM Sensor). IEEE Transactions on Nuclear Science, 2018, 65, 744-751.                                                                                                | 1.2 | 5         |
| 29 | A \$16imes8\$ Digital-SiPM Array With Distributed Trigger Generator for Low SNR Particle Tracking.<br>IEEE Solid-State Circuits Letters, 2019, 2, 75-78.                                                                                                                     | 1.3 | 5         |
| 30 | Characterisation of the MONDO detector response to neutrons by means of a FLUKA Monte Carlo simulation. Radiation Measurements, 2018, 119, 144-149.                                                                                                                          | 0.7 | 4         |
| 31 | Validation of Geant4 Nuclear Reaction Models for Hadron Therapy and Preliminary Results with BLOB.<br>IFMBE Proceedings, 2019, , 675-685.                                                                                                                                    | 0.2 | 4         |
| 32 | Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 16O ion beams in a PMMA target at large angles. Physica Medica, 2019, 64, 45-53.                                                                                         | 0.4 | 4         |
| 33 | Charge identification of nuclear fragments with the FOOT Time-Of-Flight system. Nuclear Instruments<br>and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2021, 1001, 165206.                                   | 0.7 | 4         |
| 34 | Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target. EPJ Web of Conferences, 2016, 117, 05007.                                                                                                                     | 0.1 | 3         |
| 35 | Preliminary test of the MONDO project secondary fast and ultrafast neutrons tracker response using protons and MIP particles. Journal of Instrumentation, 2018, 13, C04014-C04014.                                                                                           | 0.5 | 3         |
| 36 | Performance Evaluation of the TOF-Wall Detector of the FOOT Experiment. IEEE Transactions on Nuclear Science, 2021, 68, 1161-1168.                                                                                                                                           | 1.2 | 3         |

GIACOMO TRAINI

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Use of bremsstrahlung radiation to identify hidden weak β <sup>â^'</sup> sources: feasibility and possible use in radio-guided surgery. Journal of Instrumentation, 2017, 12, P11006-P11006.                                        | 0.5 | 2         |
| 38 | Radio-Guided Surgery with βâ^ Radiation: Tests on Ex-Vivo Specimens. IFMBE Proceedings, 2019, , 693-697.                                                                                                                            | 0.2 | 2         |
| 39 | The Foot (Fragmentation Of Target) Experiment. , 2017, , .                                                                                                                                                                          |     | 2         |
| 40 | Position sensitive β <sup>â^'</sup> detector based on p-terphenyl scintillator for medical applications.<br>Journal of Instrumentation, 2018, 13, P07001-P07001.                                                                    | 0.5 | 1         |
| 41 | Scintillating Fiber Devices for Particle Therapy Applications. IEEE Transactions on Nuclear Science, 2018, 65, 2054-2060.                                                                                                           | 1.2 | 1         |
| 42 | Charged particles and neutron trackers: Applications to particle therapy. Nuclear Instruments and<br>Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2020, 954, 161229. | 0.7 | 1         |
| 43 | Enhancing the understanding of fragmentation processes in hadrontherapy and radioprotection in space with the FOOT experiment. Physica Scripta, 2021, 96, 114013.                                                                   | 1.2 | 1         |
| 44 | FRED: a fast Monte Carlo code on GPU for quality control in Particle Therapy. Journal of Physics:<br>Conference Series, 2020, 1548, 012020.                                                                                         | 0.3 | 1         |
| 45 | Abstract ID: 67 MC codes and range monitoring in particle therapy: The case of secondary charged particles. Physica Medica, 2017, 42, 49.                                                                                           | 0.4 | 0         |
| 46 | Abstract ID: 1 Elastic scattering in FLUKA code for MONDO experiment: characterization of the secondary fast and ultrafast neutrons emitted in particle therapy. Physica Medica, 2017, 42, 1.                                       | 0.4 | 0         |
| 47 | MONDO: A tracker for the characterization of secondary fast and ultrafast neutrons emitted in particle therapy. Journal of Physics: Conference Series, 2018, 956, 012013.                                                           | 0.3 | 0         |
| 48 | In-room performance evaluation of a novel online charged secondary particles monitor of light ions<br>PT treatments. , 2018, , .                                                                                                    |     | 0         |
| 49 | A 16 $	ilde{A}-$ 8 Digital-SiPM Array With Distributed Trigger Generator for Low SNR Particle Tracking. , 2019, , .                                                                                                                 |     | 0         |
| 50 | PAPRICA: The Pair Production Imaging Chamber—Proof of Principle. Frontiers in Physics, 2021, 9, .                                                                                                                                   | 1.0 | 0         |
| 51 | The MONDO Tracker: Characterisation and Study of Secondary Ultrafast Neutrons Production in<br>Carbon Jon Radiotherany, Frontiers in Physics, 2020, 8                                                                               | 1.0 | 0         |