Marianna Garfi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2028589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critical review of resource recovery from municipal wastewater treatment plants – market supply potentials, technologies and bottlenecks. Environmental Science: Water Research and Technology, 2020, 6, 877-910.	1.2	228
2	Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. Journal of Cleaner Production, 2017, 161, 211-219.	4.6	212
3	Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Science of the Total Environment, 2018, 622-623, 1118-1130.	3.9	148
4	Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 2016, 60, 599-614.	8.2	134
5	Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy, 2011, 35, 1668-1674.	2.9	122
6	Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Science of the Total Environment, 2017, 586, 1-9.	3.9	103
7	Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells. Science of the Total Environment, 2017, 584-585, 355-362.	3.9	89
8	Natural pigments from microalgae grown in industrial wastewater. Bioresource Technology, 2020, 303, 122894.	4.8	87
9	Multi-criteria analysis for improving strategic environmental assessment of water programmes. A case study in semi-arid region of Brazil. Journal of Environmental Management, 2011, 92, 665-675.	3.8	85
10	Life cycle assessment of drinking water: Comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles. Journal of Cleaner Production, 2016, 137, 997-1003.	4.6	82
11	Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresource Technology, 2018, 247, 513-519.	4.8	81
12	Agricultural reuse of the digestate from low-cost tubular digesters in rural Andean communities. Waste Management, 2011, 31, 2584-2589.	3.7	80
13	Technical, economic and environmental assessment of household biogas digesters for rural communities. Renewable Energy, 2014, 62, 313-318.	4.3	77
14	Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresource Technology, 2017, 237, 89-98.	4.8	76
15	Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment. Science of the Total Environment, 2019, 659, 1567-1576.	3.9	74
16	Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: Surveying the optimal scenario for microbial fuel cell implementation. Science of the Total Environment, 2014, 470-471, 754-758.	3.9	72
17	Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems. Journal of Hazardous Materials, 2020, 390, 121771.	6.5	72
18	Evaluating benefits of low-cost household digesters for rural Andean communities. Renewable and Sustainable Energy Reviews, 2012, 16, 575-581.	8.2	71

MARIANNA GARFI

#	Article	IF	CITATIONS
19	Three-stage hybrid constructed wetland system for wastewater treatment and reuse in warm climate regions. Ecological Engineering, 2013, 61, 43-49.	1.6	71
20	The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery. Bioresource Technology, 2019, 280, 27-36.	4.8	70
21	Evaluating and comparing three community small-scale wind electrification projects. Renewable and Sustainable Energy Reviews, 2012, 16, 5379-5390.	8.2	63
22	Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Research, 2017, 24, 199-206.	2.4	63
23	Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of the Total Environment, 2019, 660, 974-981.	3.9	60
24	Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells. Science of the Total Environment, 2019, 652, 1195-1208.	3.9	58
25	Recent Achievements in the Production of Biogas from Microalgae. Waste and Biomass Valorization, 2017, 8, 129-139.	1.8	56
26	Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 2018, 23, 2096.	1.7	51
27	Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource Technology, 2019, 274, 541-548.	4.8	51
28	Natural Pigments and Biogas Recovery from Microalgae Grown in Wastewater. ACS Sustainable Chemistry and Engineering, 2020, 8, 10691-10701.	3.2	51
29	Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecological Engineering, 2011, 37, 2066-2070.	1.6	48
30	Towards energy neutral microalgae-based wastewater treatment plants. Algal Research, 2017, 28, 235-243.	2.4	47
31	Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 2016, 563-564, 448-455.	3.9	46
32	Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. Bioresource Technology, 2020, 298, 122563.	4.8	46
33	Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Science of the Total Environment, 2012, 437, 61-67.	3.9	42
34	Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude. Bioresource Technology, 2011, 102, 6356-6359.	4.8	41
35	A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru. Renewable and Sustainable Energy Reviews, 2018, 95, 74-83.	8.2	40
36	Influence of hydraulic loading rate, simulated storm events and seasonality on the treatment performance of an experimental three-stage hybrid constructed wetland system. Ecological Engineering, 2016, 87, 324-332.	1.6	34

MARIANNA GARFI

#	Article	IF	CITATIONS
37	Decision-making criteria and indicators for water and sanitation projects in developing countries. Water Science and Technology, 2011, 64, 83-101.	1.2	27
38	Constructed wetlands operated as bioelectrochemical systems for the removal of organic micropollutants. Chemosphere, 2021, 271, 129593.	4.2	27
39	Carbon footprint of constructed wetlands for winery wastewater treatment. Ecological Engineering, 2020, 156, 105959.	1.6	17
40	Health and environmental impacts of drinking water choices in Barcelona, Spain: A modelling study. Science of the Total Environment, 2021, 795, 148884.	3.9	17
41	Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresource Technology, 2021, 326, 124783.	4.8	16
42	Life Cycle Assessment of the Mesophilic, Thermophilic, and Temperature-Phased Anaerobic Digestion of Sewage Sludge. Water (Switzerland), 2020, 12, 3140.	1.2	14
43	Microalgae: a sustainable adsorbent with high potential for upconcentration of indium(<scp>iii</scp>) from liquid process and waste streams. Green Chemistry, 2020, 22, 1985-1995.	4.6	14
44	Behavior of UV Filters, UV Blockers and Pharmaceuticals in High Rate Algal Ponds Treating Urban Wastewater. Water (Switzerland), 2020, 12, 2658.	1.2	12
45	Reliability and economic feasibility of online monitoring of constructed wetlands performance. Desalination and Water Treatment, 2014, 52, 5848-5855.	1.0	10
46	Promotion of full-scale constructed wetlands in the wine sector: Comparison of greenhouse gas emissions with activated sludge systems. Science of the Total Environment, 2021, 770, 145326.	3.9	10
47	Benefits and risks of agricultural reuse of digestates from plastic tubular digesters in Colombia. Waste Management, 2021, 135, 220-228.	3.7	7
48	Cooperation and Human Development Projects as Bachelor, Master and PhD Thesis: Evaluating an Internship Program. Procedia, Social and Behavioral Sciences, 2015, 196, 63-68.	0.5	6
49	A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia. Renewable and Sustainable Energy Reviews, 2022, 166, 112638.	8.2	6
50	Reusing industrial by-products to enhance phosphorus removal in waste stabilization ponds: laboratory approach. Desalination and Water Treatment, 2016, 57, 1857-1864.	1.0	4
51	Biological Treatment of Organic Waste in Wastewater—Towards a Circular and Bio-Based Economy. Water (Switzerland), 2022, 14, 360.	1.2	3
52	Biotechnology: a highly efficient tool for the current environmental challenges. Science of the Total Environment, 2018, 616-617, 1664-1667.	3.9	1