Mekhman S Yusubov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2027939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iodonium salts in organic synthesis. Arkivoc, 2011, 2011, 370-409.	0.5	219
2	Self-assembled metal–organic polyhedra: An overview of various applications. Coordination Chemistry Reviews, 2016, 306, 171-194.	18.8	193
3	Hypervalent lodine Reagents and Green Chemistry. Current Organic Synthesis, 2012, 9, 247-272.	1.3	172
4	lodine catalysis: A green alternative to transition metals in organic chemistry and technology. Resource-efficient Technologies, 2015, 1, 49-67.	0.1	125
5	Metal–organic frameworks containing N-heterocyclic carbenes and their precursors. Coordination Chemistry Reviews, 2016, 307, 188-210.	18.8	107
6	Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in Situ from Iodobenzene and Oxone: Reaction Scope and Limitations. Organic Letters, 2010, 12, 4644-4647.	4.6	85
7	A General and Convenient Preparation of [Bis(trifluoroacetoxy)iodo]perfluoroalkanes and [Bis(trifluoroacetoxy)iodo]arenes by Oxidation of Organic Iodides Using Oxone and Trifluoroacetic Acid. Journal of Organic Chemistry, 2010, 75, 2119-2122.	3.2	83
8	Solvent-Free Reactions with Hypervalent lodine Reagents. Organic Letters, 2005, 7, 519-521.	4.6	77
9	Transition metal-mediated oxidations utilizing monomeric iodosyl- and iodylarene species. Tetrahedron, 2010, 66, 5745-5752.	1.9	77
10	Synthetic applications of pseudocyclic hypervalent iodine compounds. Organic and Biomolecular Chemistry, 2016, 14, 4771-4781.	2.8	77
11	Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in Positron Emission Tomography. Arkivoc, 2013, 2013, 364-395.	0.5	71
12	Development of new recyclable reagents and catalytic systems based on hypervalent iodine compounds. Mendeleev Communications, 2010, 20, 185-191.	1.6	63
13	Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous?. Catalysis Science and Technology, 2015, 5, 4901-4925.	4.1	55
14	Physicochemical Characterization and Antioxidant Activity of Humic Acids Isolated from Peat of Various Origins. Molecules, 2018, 23, 753.	3.8	54
15	Highly efficient RuCl3-catalyzed disproportionation of (diacetoxyiodo)benzene to iodylbenzene and iodobenzene; leading to the efficient oxidation of alcohols to carbonyl compounds. Tetrahedron Letters, 2006, 47, 6305-6308.	1.4	49
16	lodine(V)/Ruthenium(III) ocatalyzed Oxidations: A Highly Efficient Tandem Catalytic System for the Oxidation of Alcohols and Hydrocarbons with Oxone. Chemistry - A European Journal, 2009, 15, 11091-11094.	3.3	49
17	RuCl3-Catalyzed Oxidation of Iodoarenes with Peracetic Acid:Â New Facile Preparation of Iodylarenes. Journal of Organic Chemistry, 2006, 71, 9912-9914.	3.2	46
18	Preparation and X-ray Structural Study of Dibenziodolium Derivatives. Journal of Organic Chemistry, 2015, 80, 5783-5788.	3.2	44

#	Article	IF	CITATIONS
19	Diaryliodonium as a double Ï <i>f</i> -hole donor: the dichotomy of thiocyanate halogen bonding provides divergent solid state arylation by diaryliodonium cations. Organic Chemistry Frontiers, 2020, 7, 2230-2242.	4.5	44
20	A Robust Molecular Catalyst Generated Inâ€Situ for Photo―and Electrochemical Water Oxidation. ChemSusChem, 2017, 10, 862-875.	6.8	43
21	Preparation and X-ray Structures of 3-[Bis(trifluoroacetoxy)iodo]benzoic Acid and 3-[Hydroxy(tosyloxy)iodo]benzoic Acid:  New Recyclable Hypervalent Iodine Reagents. Journal of Organic Chemistry, 2008, 73, 295-297.	3.2	42
22	Pseudocyclic Arylbenziodoxaboroles: Efficient Benzyne Precursors Triggered by Water at Room Temperature. Chemistry - A European Journal, 2017, 23, 16738-16742.	3.3	39
23	Self-Assembly of Hydroxy(phenyl)iodonium Ions in Acidic Aqueous Solution: Preparation, and X-ray Crystal Structures of Oligomeric Phenyliodine(III) Sulfates. Inorganic Chemistry, 2009, 48, 4908-4917.	4.0	38
24	Investigation of the preparation and catalytic activity of supported Mo, W, and Re oxides as heterogeneous catalysts in olefin metathesis. Catalysis Reviews - Science and Engineering, 2016, 58, 113-156.	12.9	37
25	Bifurcated Halogen Bonding Involving Diaryliodonium Cations as Iodine(III)-Based Double-σ-Hole Donors. Crystal Growth and Design, 2021, 21, 1136-1147.	3.0	36
26	Preparation, X-ray Structure, and Reactivity of 2-lodylpyridines: Recyclable Hypervalent Iodine(V) Reagents. Journal of Organic Chemistry, 2011, 76, 3812-3819.	3.2	35
27	Preparation and X-ray Structural Study of 1-Arylbenziodoxolones. Journal of Organic Chemistry, 2013, 78, 3767-3773.	3.2	35
28	Preparation and Structure of Oligomeric Iodosylbenzene Sulfate (PhIO) ₃ ·SO ₃ : Stable and Waterâ€Soluble Analog of Iodosylbenzene. European Journal of Organic Chemistry, 2007, 2007, 4475-4478.	2.4	34
29	Synthesis of Oxazoline and Oxazole Derivatives by Hypervalent-Iodine-Mediated Oxidative Cycloaddition Reactions. Synthesis, 2020, 52, 2299-2310.	2.3	33
30	Potassium 4â€lodylbenzenesulfonate: Preparation, Structure, and Application as a Reagent for Oxidative Iodination of Arenes. European Journal of Organic Chemistry, 2012, 2012, 5935-5942.	2.4	27
31	Oxidative Cycloaddition of Aldoximes with Maleimides using Catalytic Hydroxy(aryl)iodonium Species. Advanced Synthesis and Catalysis, 2016, 358, 2340-2344.	4.3	27
32	Can Plasmon Change Reaction Path? Decomposition of Unsymmetrical Iodonium Salts as an Organic Probe. Journal of Physical Chemistry Letters, 2020, 11, 5770-5776.	4.6	27
33	Plasmonâ€Assisted Activation and Grafting by Iodonium Salt: Functionalization of Optical Fiber Surface. Advanced Materials Interfaces, 2018, 5, 1800725.	3.7	26
34	m-lodosylbenzoic acid, a tagged hypervalent iodine reagent for the iodo-functionalization of alkenes and alkynes. Tetrahedron Letters, 2008, 49, 1506-1509.	1.4	25
35	Hypervalent Iodineâ€Catalyzed Synthesis of 1,2,4â€Oxadiazoles from Aldoximes and Nitriles. Asian Journal of Organic Chemistry, 2016, 5, 1128-1133.	2.7	25
36	Preparation, Structure, and Reactivity of Pseudocyclic Benziodoxole Tosylates: New Hypervalent Iodine Oxidants and Electrophiles. Chemistry - A European Journal, 2017, 23, 691-695.	3.3	25

Μεκημαν S Yusubov

#	Article	IF	CITATIONS
37	One-pot synthesis of diaryliodonium salts from arenes and aryl iodides with Oxone–sulfuric acid. Beilstein Journal of Organic Chemistry, 2018, 14, 849-855.	2.2	25
38	Halogen Bonding Provides Heterooctameric Supramolecular Aggregation of Diaryliodonium Thiocyanate. Crystals, 2020, 10, 230.	2.2	25
39	Preparation, X-ray Structures, Spectroscopic, and Redox Properties of Di- and Trinuclear Iron–Zirconium and Iron–Hafnium Porphyrinoclathrochelates. Inorganic Chemistry, 2016, 55, 11867-11882.	4.0	24
40	Hypoioditeâ€Mediated Catalytic Cyclopropanation of Alkenes with Malononitrile. Advanced Synthesis and Catalysis, 2014, 356, 3336-3340.	4.3	23
41	2-lodoxybenzoic acid ditriflate: the most powerful hypervalent iodine(<scp>v</scp>) oxidant. Chemical Communications, 2019, 55, 7760-7763.	4.1	23
42	Solventâ€Free Iodination of Arenes using Iodine–Silver Nitrate Combination. Synthetic Communications, 2007, 37, 1259-1265.	2.1	22
43	Preparation and X-ray Crystal Study of Benziodoxaborole Derivatives: New Hypervalent lodine Heterocycles. Inorganic Chemistry, 2011, 50, 11263-11272.	4.0	22
44	Synthesis of Five-Membered Iodine–Nitrogen Heterocycles from Benzimidazole-Based Iodonium Salts. Journal of Organic Chemistry, 2018, 83, 12056-12070.	3.2	22
45	Thermal stability of <i>N</i> -heterocycle-stabilized iodanes – a systematic investigation. Beilstein Journal of Organic Chemistry, 2019, 15, 2311-2318.	2.2	22
46	2-lodoxybenzoic acid organosulfonates: preparation, X-ray structure and reactivity of new, powerful hypervalent iodine(ν) oxidants. Chemical Communications, 2013, 49, 11269.	4.1	21
47	Binuclear iron(III) octakis(perfluorophenyl)tetraazaporphyrin μ-oxodimer: a highly efficient catalyst for biomimetic oxygenation reactions. Tetrahedron Letters, 2014, 55, 5687-5690.	1.4	21
48	Copperâ€Catalyzed Selective Nâ€Arylation of Oxadiazolones by Diaryliodonium Salts. Advanced Synthesis and Catalysis, 2021, 363, 3566-3576.	4.3	21
49	Mild and efficient synthesis of iodylarenes using Oxone as oxidant. Tetrahedron Letters, 2016, 57, 4254-4256.	1.4	20
50	Facile One-Pot Synthesis of Diaryliodonium Salts from Arenes and Aryl Iodides with Oxone. ChemistryOpen, 2017, 6, 18-20.	1.9	18
51	Flow Synthesis of Iodonium Trifluoroacetates through Direct Oxidation of Iodoarenes by Oxone®. European Journal of Organic Chemistry, 2019, 2019, 2081-2088.	2.4	18
52	Tagged Hypervalent lodine Reagents:  A New Purification Concept Based on Ion Exchange through SN2 Substitution. Organic Letters, 2007, 9, 5199-5202.	4.6	17
53	Hypervalent Iodine Reagent Mediated Oxidative Heterocyclization of Aldoximes with Heterocyclic Alkenes. Journal of Organic Chemistry, 2017, 82, 11742-11751.	3.2	16
54	Zwitterionic iodonium species afford halogen bond-based porous organic frameworks. Chemical Science, 2022, 13, 5650-5658.	7.4	16

Μεκημαν S Yusubov

#	Article	IF	CITATIONS
55	2â€Iodoxybenzoic Acid Tosylates: the Alternative to Dess–Martin Periodinane Oxidizing Reagents. Advanced Synthesis and Catalysis, 2017, 359, 3207-3216.	4.3	15
56	Hypervalent Iodine(III) Reagent Mediated Regioselective Cycloaddition of Aldoximes with Enaminones. European Journal of Organic Chemistry, 2019, 2019, 6682-6689.	2.4	15
57	m-lodosylbenzoic acid – a convenient recyclable reagent for highly efficient aromatic iodinations. Beilstein Journal of Organic Chemistry, 2007, 3, 19.	2.2	13
58	Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. Journal of Organic Chemistry, 2021, 86, 7163-7178.	3.2	13
59	Preparation and Reactivity of Polystyrene-Supported Iodosylbenzene: Convenient Recyclable Oxidizing Reagent and Catalyst. Synlett, 2011, 2011, 1613-1617.	1.8	12
60	Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) – a powerful hypervalent iodine(V) oxidant. Beilstein Journal of Organic Chemistry, 2018, 14, 1854-1858.	2.2	12
61	Preparation and structure of phenolic aryliodonium salts. Chemical Communications, 2018, 54, 10363-10366.	4.1	12
62	The first example of a domino Diels-Alder/retro-Diels-Alder reaction of 1,3-dienic δ-sultones with alkynes: a simple synthesis of m-terphenyl dicarboxy derivatives from 4,6-diphenyl-[1,2]oxathiine 2,2-dioxide. Journal of Sulfur Chemistry, 2009, 30, 4-9.	2.0	11
63	Hypervalent iodine in the structure of N-heterocycles: synthesis, structure, and application in organic synthesis. Chemistry of Heterocyclic Compounds, 2020, 56, 854-866.	1.2	11
64	<i>m</i> -lodosylbenzoic Acid: Recyclable Hypervalent lodine Reagent for α -Tosyloxylation and α -Mesyloxylation of Ketones. Synthetic Communications, 2009, 39, 3772-3784.	2.1	10
65	Preparation, structure, and reactivity of bicyclic benziodazole: a new hypervalent iodine heterocycle. Beilstein Journal of Organic Chemistry, 2018, 14, 1016-1020.	2.2	10
66	lodonium imides in organic synthesis. Arkivoc, 2020, 2019, 228-255.	0.5	10
67	Reactions of 1â€Arylbenziodoxolones with Azide Anion: Experimental and Computational Study of Substituent Effects. European Journal of Organic Chemistry, 2018, 2018, 640-647.	2.4	9
68	Preparation, Structure, and Reactivity of Pseudocyclic βâ€Trifluorosulfonyloxy Vinylbenziodoxolone Derivatives. Advanced Synthesis and Catalysis, 2021, 363, 3365-3371.	4.3	9
69	Preparation, Xâ€ray Structure, and Reactivity of Triisopropylsilyl‣ubstituted ArylÂiodonium Salts. European Journal of Organic Chemistry, 2015, 2015, 4831-4834.	2.4	8
70	Benziodoxole-Derived Organosulfonates: The Strongest Hypervalent Iodine Electrophiles and Oxidants. Synlett, 2020, 31, 315-326.	1.8	8
71	Zefirov's reagent and related hypervalent iodine triflates. Mendeleev Communications, 2021, 31, 282-287.	1.6	8
72	Sulfonylimino Group Transfer Reaction Using Imino-λ3-iodanes with I2 as Catalyst Under Metal-free Conditions. Molecules, 2019, 24, 979.	3.8	7

Μεκημαν S Yusubov

#	Article	IF	CITATIONS
73	New artificial network model to estimate biological activity of peat humic acids. Environmental Research, 2020, 191, 109999.	7.5	7
74	Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules, 2022, 27, 3860.	3.8	5
75	Iminoâ€Î» 3 â€iodane and Catalytic Amount of I 2 â€Mediated Synthesis of N â€Allylsulfenamides via [2,3]â€Sigmatropic Rearrangement. European Journal of Organic Chemistry, 2020, 2020, 6433-6439.	2.4	4
76	m-Iodosylbenzoic Acid as a Convenient Recyclable Reagent for Highly ÂEfficient RuCl3-Catalyzed Oxidation of Alcohols to Carbonyl Compounds. Synlett, 2007, 2007, 0563-0566.	1.8	3
77	Expedient Synthesis of Long-Chain ω-Substituted Fatty Acids and Esters from Cyclic Ketones Using Iodine and Hydrogen Peroxide. Synthesis, 2018, 50, 4081-4088.	2.3	3
78	Potassium 4-lodylbenzenesulfonate (PIBS): An Efficient Recyclable Hypervalent lodine Reagent for Iodo-functionalization of Alkenes, Alkynes and Ketones. Current Organic Synthesis, 2016, 13, 629-637.	1.3	3
79	Convenient Synthesis of Benziodazolone: New Reagents for Direct Esterification of Alcohols and Amidation of Amines. Molecules, 2021, 26, 7355.	3.8	2
80	Efficient Synthesis of ωâ€{ ¹⁸ F]Fluoroaliphatic Carboxylic Esters and Acids for Positron Emission Tomography. European Journal of Organic Chemistry, 2020, 2020, 6375-6381.	2.4	1
81	Solvent-Free Reactions with Hypervalent Iodine Reagents ChemInform, 2005, 36, no.	0.0	0
82	Synthesis of polydicyclopentadiene using the Cp ₂ TiCl ₂ /Et ₂ AlCl catalytic system and thin-layer oxidation of the polymer in air. Beilstein Journal of Organic Chemistry, 2019, 15, 733-745.	2.2	0
83	Zefirov's reagent and related hypervalent iodine triflates. Mendeleev Communications, 2021, 31, 282-287.	1.6	0