David T Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2027377/publications.pdf

Version: 2024-02-01

687363 713466 1,451 21 13 21 citations h-index g-index papers 21 21 21 2011 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SWAN pathway-network identification of common aneuploidy-based oncogenic drivers. Nucleic Acids Research, 2022, 50, 3673-3692.	14.5	10
2	BRD4 promotes resection and homology-directed repair of DNA double-strand breaks. Nature Communications, 2022, 13 , .	12.8	17
3	BRCA1-BARD1 regulates transcription through BRD4 in <i>Xenopus</i> nucleoplasmic extract. Nucleic Acids Research, 2021, 49, 3263-3273.	14.5	7
4	Heterogeneous nuclear ribonucleoprotein E1 binds polycytosine DNA and monitors genome integrity. Life Science Alliance, 2021, 4, e202000995.	2.8	5
5	Uncoupling of p97 ATPase activity has a dominant negative effect on protein extraction. Scientific Reports, 2019, 9, 10329.	3.3	5
6	Chromatin Immunoprecipitation (ChIP) of Plasmid-Bound Proteins in Xenopus Egg Extracts. Methods in Molecular Biology, 2019, 1999, 173-184.	0.9	3
7	Cell-free transcription in Xenopus egg extract. Journal of Biological Chemistry, 2019, 294, 19645-19654.	3.4	7
8	The evolving role of DNA inter-strand crosslinks in chemotherapy. Current Opinion in Pharmacology, 2018, 41, 20-26.	3.5	41
9	p97 Promotes a Conserved Mechanism of Helicase Unloading during DNA Cross-Link Repair. Molecular and Cellular Biology, 2016, 36, 2983-2994.	2.3	55
10	Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 2015, 348, 1253671.	12.6	183
11	XPF-ERCC1 Acts in Unhooking DNA Interstrand Crosslinks in Cooperation with FANCD2 and FANCP/SLX4. Molecular Cell, 2014, 54, 460-471.	9.7	254
12	BRCA1 Promotes Unloading of the CMG Helicase from a Stalled DNA Replication Fork. Molecular Cell, 2014, 56, 174-185.	9.7	101
13	The MCM8-MCM9 Complex Promotes RAD51 Recruitment at DNA Damage Sites To Facilitate Homologous Recombination. Molecular and Cellular Biology, 2013, 33, 1632-1644.	2.3	100
14	Construction of Plasmids Containing Site-Specific DNA Interstrand Cross-Links for Biochemical and Cell Biological Studies. Methods in Molecular Biology, 2012, 920, 203-219.	0.9	29
15	A Novel Function for BRCA1 In Crosslink Repair. Molecular Cell, 2012, 46, 111-112.	9.7	10
16	Selective Bypass of a Lagging Strand Roadblock by the Eukaryotic Replicative DNA Helicase. Cell, 2011, 146, 931-941.	28.9	317
17	Mechanism of RAD51-Dependent DNA Interstrand Cross-Link Repair. Science, 2011, 333, 84-87.	12.6	213
18	Fork regression is an active helicaseâ€driven pathway in bacteriophage T4. EMBO Reports, 2009, 10, 394-399.	4.5	24

DAVID T LONG

#	Article	IF	CITATION
19	The ε Subunit of DNA Polymerase III Is Involved in the Nalidixic Acid-Induced SOS Response in <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 5239-5247.	2.2	15
20	Regression supports two mechanisms of fork processing in phage T4. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6852-6857.	7.1	27
21	The Phage T4 Protein UvsW Drives Holliday Junction Branch Migration. Journal of Biological Chemistry, 2007, 282, 34401-34411.	3.4	28