Lucio Minuti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026766/publications.pdf

Version: 2024-02-01

279798 454955 1,334 82 23 30 citations h-index g-index papers 94 94 94 1118 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	General, Mild, and Metal-Free Synthesis of Phenyl Selenoesters from Anhydrides and Their Use in Peptide Synthesis. Journal of Organic Chemistry, 2017, 82, 4588-4603.	3.2	66
2	Simple extraction method and gas chromatography–mass spectrometry in the selective ion monitoring mode for the determination of phenols in wine. Journal of Chromatography A, 2006, 1114, 263-268.	3.7	65
3	Dielsâ^Alder Reactions of 3-Substituted Coumarins in Water and under High-Pressure Condition. An Uncatalyzed Route to Tetrahydro-6H-benzo[c]chromen-6-ones. Journal of Organic Chemistry, 2006, 71, 70-74.	3.2	54
4	An Efficient Synthetic Approach to Substituted Penta- and Hexahelicenes. European Journal of Organic Chemistry, 1999, 1999, 3155-3163.	2.4	42
5	High Pressure Dielsâ^'Alder Approach to Hydroxy-Substituted 6a-Cyano-tetrahydro-6H-benzo[c]chromen-6-ones: A Route to Δ ⁶ - <i>Cis</i> -Cannabidiol. Journal of Organic Chemistry, 2009, 74, 4311-4317.	3.2	41
6	High pressure and thermal Diels–Alder reaction of 2-vinyl-benzo[b]furan and 2-vinyl-benzo[b]thiophene. Synthesis of new condensed heterocycles. Tetrahedron, 2001, 57, 4959-4965.	1.9	36
7	Diels-Alder reactions of cycloalkenones. 14. Endo diastereoselectivity of 2-cyclohexenones in reactions with cyclopentadiene. Journal of Organic Chemistry, 1988, 53, 4325-4328.	3.2	35
8	Reactivity and Selectivity in Lewis-Acid-Catalyzed DielsAlder Reactions of 2-Cyclohexenones Acta Chemica Scandinavica, 1993, 47, 255-263.	0.7	35
9	Determination of phenolic compounds in wines by novel matrix solid-phase dispersion extraction and gas chromatography/mass spectrometry. Journal of Chromatography A, 2008, 1185, 23-30.	3.7	32
10	Synthesis of <scp>d</scp> - <i>erythro</i> -Sphinganine through Serine-Derived α-Amino Epoxides. Journal of Organic Chemistry, 2014, 79, 5320-5326.	3.2	32
11	A unified strategy for the synthesis of three conicol marine natural products. Tetrahedron, 2015, 71, 3253-3262.	1.9	29
12	High pressure -Lewis acid catalyzed diels-alder reactions of 3-methylcyclohex-2-en-1-one. A straightforward route to cis and Tras angularly methylated octalones Tetrahedron Letters, 1991, 32, 6445-6448.	1.4	28
13	Diels-Alder reactions of arylethenes. Synthesis of some [5]phenacenes and fluorenoanthracenes. Tetrahedron, 1998, 54, 10891-10898.	1.9	28
14	High Pressure Diels-Alder Reactions of 2-Vinyl-3,4-Dihydronaphthalene. Synthesis of Cyclopenta[c]-and Indeno[c]Phenanthrenones Tetrahedron, 1995, 51, 8953-8958.	1.9	27
15	High-Pressure Dielsâ^'Alder Cycloadditions between Benzylideneacetones and 1,3-Butadienes: Application to the Synthesis of (<i>R,R</i>)-(â^')- and (<i>S,S</i>)-(+)-Î" ⁸ -Tetrahydrocannabinol. Journal of Organic Chemistry, 2010, 75, 4251-4260.	3.2	27
16	Diels-Alder reactions of cycloalkenones. 16. The Endo diastereoselectivity of some cycloalkenones in reactions with 1,3-cyclohexadiene. Journal of Organic Chemistry, 1989, 54, 710-712.	3.2	25
17	A new short synthetic approach to cyclopentaphenanthrenones. Tetrahedron, 1994, 50, 10359-10366.	1.9	25
18	Diels-Alder reaction of $3,3\hat{a}\in^2$, $4,4\hat{a}\in^2$ -tetrahydro- $1,1\hat{a}\in^2$ -binaphthalene. One-pot synthesis of a pentahelicenebenzoquinone. Tetrahedron, 1997, 53, 6873-6878.	1.9	25

#	Article	IF	Citations
19	[2.2]Paracyclophanes incorporated within poly(3-butylthiophene): synthesis and photoelectrical properties. New Journal of Chemistry, 2006, 30, 939.	2.8	25
20	High-Pressure Access to the \hat{l} 9-cis- and \hat{l} 9-trans-Tetrahydrocannabinols Family. Journal of Organic Chemistry, 2011, 76, 5392-5403.	3.2	25
21	Synthesis and structure of [2.2]paracyclophanes incorporating alkyne units in the extended linear chain. Tetrahedron Letters, 2005, 46, 5735-5737.	1.4	24
22	High-Pressure-Promoted Diels–Alder Approach to Biaryls: Application to the Synthesis of the Cannabinols Family. Journal of Organic Chemistry, 2012, 77, 7923-7931.	3.2	24
23	Intramolecular Displacement of Phenylselenone by a Hydroxy Group: Stereoselective Synthesis of 2-Substituted Tetrahydrofurans. Organic Letters, 2013, 15, 3906-3909.	4.6	23
24	An improved synthesis of (S)-(+)- and (R)-(â^')-4-ethenyl[2.2]paracyclophane. Tetrahedron: Asymmetry, 2000, 11, 4221-4225.	1.8	21
25	Stereoselective Synthesis of Substituted Tetrahydropyrans and Isochromans by Cyclization of Phenylseleno Alcohols. Journal of Organic Chemistry, 2015, 80, 8102-8112.	3.2	21
26	A New Short Route to Hexahelicenes. Synthetic Communications, 1998, 28, 2181-2190.	2.1	18
27	5-Nitro[2.2]paracyclophanepyran-6-one—building block for the synthesis of [2.2]paracyclophanes containing condensed benzofuran subunits. Tetrahedron Letters, 2005, 46, 8789-8792.	1.4	18
28	Stereoselective Synthesis of Dithia[3.3]cyclophane <i>S</i> , <i>S′</i> â€Dioxides with Planar and Central Chirality. European Journal of Organic Chemistry, 2014, 2014, 2099-2104.	2.4	18
29	Tandem diels-alder reaction of 4-oxo-2-cyclopentenyl acetate. A facile one-pot synthesis of hydrofluorenones. Tetrahedron, 1993, 49, 1071-1078.	1.9	17
30	Short Synthetic Approach to Benzo[G]Cyclopenta[A]- Phenanthrenes and Benzo[G]-Indeno[A]Phenanthrenones. Polycyclic Aromatic Compounds, 1996, 8, 213-227.	2.6	17
31	Synthesis of enantiopure angularly condensed [2.2]paracyclophanes containing five-membered rings. Tetrahedron: Asymmetry, 2003, 14, 481-487.	1.8	17
32	Synthesis and mutagenicity of some cyclopenta[c]phenanthrenes and indeno[c]phenanthrenes. Carcinogenesis, 1996, 17, 2009-2012.	2.8	16
33	Quantitative structure–activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors. Ecotoxicology and Environmental Safety, 2007, 66, 353-361.	6.0	16
34	Synthesis of some new enantiopure [2.2]paracyclophanes bearing polycyclic aromatic subunits. Tetrahedron: Asymmetry, 2002, 13, 1331-1335.	1.8	15
35	Synthesis and absolute configuration of a new chiral [2.2]paracyclophane-based diene. Tetrahedron: Asymmetry, 2002, 13, 1257-1263.	1.8	14
36	Maleimide cycloadditions by sulfinyldienes: is the sulfur configuration the only controller of the diastereofacial selectivity?. Tetrahedron, 2005, 61, 7719-7726.	1.9	14

#	Article	IF	Citations
37	High pressure and thermal Diels–Alder reactions of 5-nitro[2.2]paracyclophanepyran-6-one. Tetrahedron, 2007, 63, 5477-5481.	1.9	14
38	Synthesis of enantiopure helical cyclophanes containing five-membered heterocyclic rings. Tetrahedron: Asymmetry, 2003, 14, 2775-2779.	1.8	13
39	Highâ€Pressureâ€Promoted Multicomponent and Metalâ€Free Synthesis of Polyfunctionalized Biaryls. European Journal of Organic Chemistry, 2017, 2017, 5370-5377.	2.4	13
40	Exploration of synthetic strategies for the stereoselective preparation of novel tetrahydrofuran-containing biaryls: A high-pressure promoted Diels-Alder approach. Tetrahedron, 2018, 74, 6534-6543.	1.9	13
41	Tripodal tris-disulfides as capping agents for a controlled mixed functionalization of gold nanoparticles. New Journal of Chemistry, 2018, 42, 16436-16440.	2.8	13
42	N-(Phenylselenomethyl)phthalimide as new reagent for mild protection of alcohols as Pim-ethers. Tetrahedron Letters, 2012, 53, 2709-2711.	1.4	12
43	Diels-Alder reactions of cycloalkenones. 10. Endo-exo diastereoselectivity of 2-cyclohexenones. Journal of Organic Chemistry, 1986, 51, 2649-2652.	3.2	11
44	The Preparation of Helical Cyclophanes Containing Five-membered Rings. European Journal of Organic Chemistry, 2001, 2001, 4259.	2.4	11
45	o-Thioquinones on [2.2]paracyclophanes: an example of totally stereocontrolled hetero Diels–Alder reactions. Tetrahedron, 2006, 62, 5626-5631.	1.9	11
46	Synthesis and Structural Properties of Cyclophanes Containing Thiophene Rings in the Side-chain. Heterocycles, 2006, 68, 1249.	0.7	11
47	Diels-Alder reactions of cycloalkenones. 2. Preparation and structure of cyclohexadienone adducts. Journal of Organic Chemistry, 1983, 48, 1810-1813.	3.2	10
48	Diels-Alder reactions of cycloalkenones. 5. 5-Alkyl-2-cyclohexenones as dienophiles. Journal of Organic Chemistry, 1985, 50, 4686-4690.	3.2	10
49	Diels-Alder reactions of cycloalkenones. 13. Reactions of 2-cyclohexenones with (E)-1-methoxy-1,3-butadiene. Journal of Organic Chemistry, 1988, 53, 4607-4610.	3.2	10
50	Regiochemistry of the Diels-Alder Reaction of 1-Ethenyl-hydronaphthalenes and 2-Methyl-2-cyclopenten-1-one. Synthetic Communications, 1992, 22, 1535-1540.	2.1	10
51	Reactions of (S)-(+)-4-ethenyl[2.2]paracyclophane with heterocyclic quinones. Tetrahedron: Asymmetry, 2003, 14, 2387-2392.	1.8	10
52	Synthesis of helical [2.2]paracyclophanes containing carbocyclic and heterocyclic five-membered rings. Tetrahedron, 2004, 60, 11759-11764.	1.9	10
53	New access to 4-aryl[2,2]paracyclophanes by high-pressure Diels–Alder reaction. Tetrahedron Letters, 2016, 57, 917-919.	1.4	10
54	Synthesis and Mutagenicity of Some Benzo $[\langle i \rangle g \langle i \rangle]$ - and Indeno $[\langle i \rangle a \langle i \rangle]$ Phenanthrenes. Polycyclic Aromatic Compounds, 1999, 13, 9-24.	2.6	9

#	Article	IF	CITATIONS
55	Magnesium bis (monoperoxyphthalate) hexahydrate as mild and efficient oxidant for the synthesis of selenones. Beilstein Journal of Organic Chemistry, 2014, 10, 1267-1271.	2.2	9
56	Isopropenyl acetate: A cheap and general acylating agent of alcohols under metal-free conditions. Tetrahedron Letters, 2017, 58, 4051-4053.	1.4	9
57	Diels Alder reactions of cycloalkenones. 11. Regioselectivity of 2-cyclohexenones. Journal of Organic Chemistry, 1986, 51, 5177-5182.	3.2	8
58	Diels-Alder reactions of cycloalkenones. 15. Synthesis of cis- and transDELTA.6-4a-methyl-1-octalones. Journal of Organic Chemistry, 1989, 54, 1217-1218.	3.2	8
59	Diels-Alder reactions of cycloalkenones. 19. Diels-Alder reactions of some carenones. Journal of Organic Chemistry, 1990, 55, 4261-4265.	3.2	8
60	High-pressure diels-alder reactions of bicyclic dienones. short syntheses of hydrophenanthrenones. Tetrahedron, 1995, 51, 10033-10040.	1.9	8
61	High pressure Diels–Alder reactions of (+)-nopadiene with cycloalkenones. Tetrahedron: Asymmetry, 2004, 15, 1187-1192.	1.8	8
62	High Pressure Lewis-Acid Catalyzed Diels-Alder Reactions of 3-Methyl-2-cyclopenten-1-one. A New Construction of Angularly Methylated Hydrindanones. Synthetic Communications, 1992, 22, 2965-2969.	2.1	7
63	Unexpected chlorination of angularly annelated [2.2] paracyclophanes during DDQ oxidation. Tetrahedron Letters, 2005, 46, 949-950.	1.4	7
64	Diels-Alder reactions of cycloalkenones. 18. Unusual Diels-Alder reactions of eucarvone. Journal of Organic Chemistry, 1990, 55, 1366-1368.	3.2	6
65	Diels-Alder reactions of cycloalkenones. 20. Diels-Alder reactions of a bicyclic, cross-conjugated dienone. Journal of Organic Chemistry, 1991, 56, 5353-5356.	3.2	6
66	A One-step Regioselective Construction of the Steroid Skeleton by Lewis Acid Catalyzed High Pressure Diels-Alder Reaction ¹ . Natural Product Research, 1993, 2, 91-95.	0.4	6
67	An approach for fluorometric determination of glycosyltransferase activities. Glycoconjugate Journal, 1996, 13, 631-636.	2.7	6
68	Synthesis of enantiopure sugar-decorated six-armed triptycene derivatives. Beilstein Journal of Organic Chemistry, 2013, 9, 2410-2416.	2.2	6
69	SYNTHESIS OF HELICENOPHANES CONTAINING TWO CARBOCYCLIC FIVE-MEMBERED RINGS. Polycyclic Aromatic Compounds, 2005, 25, 13-22.	2.6	5
70	Diels-Alder reactions of cycloalkenones. 17. Site selectivity of Diels-Alder reactions of a bicyclic, heteroannular dienone. Journal of Organic Chemistry, 1989, 54, 6138-6140.	3.2	4
71	Diels–Alder reactions of bicyclic, heteroannular dienones. Canadian Journal of Chemistry, 1992, 70, 1481-1485.	1.1	3
72	Steroid Synthesis by High Pressure Diels-alder Reaction of 3-methyl-2-cyclopenten-1-one. Natural Product Research, 1994, 5, 165-170.	0.4	3

#	Article	lF	CITATION
73	Structure Elucidation and NMR Characterization of Two New Cyclophane Derivatives. Structural Chemistry, 2004, 15, 247-252.	2.0	3
74	Structure Determination of an Unusual [2.2] paracyclophane Derivative by NMR Spectroscopy. Structural Chemistry, 2005, 16, 581-585.	2.0	3
75	Metal-Free Hyperbaric Multicomponent Approach to 4-Aryl[2.2]Paracyclophanes. Polycyclic Aromatic Compounds, 2021, 41, 1067-1076.	2.6	3
76	Synthesis and structure–mutagenicity relationship of benzo-annulated cyclopentaphenanthrenes. Bioorganic and Medicinal Chemistry, 2001, 9, 1509-1515.	3.0	2
77	High-Pressure Diels-Alder Reaction: Preparation of [2.2]Paracyclophane Derivatives. Polycyclic Aromatic Compounds, 2003, 23, 483-493.	2.6	2
78	Synthesis of optically active polycyclic compounds by Diels–Alder reactions of (+)-nopadiene. Tetrahedron: Asymmetry, 2004, 15, 3245-3248.	1.8	2
79	Sequestering ability to Cu2+ of a new bodipy-based dye and its behavior as in vitro fluorescent sensor. Journal of Inorganic Biochemistry, 2017, 167, 116-123.	3.5	2
80	SYNTHESIS OF NORBORN-5-EN-2-ONE AND ITS HOMOLOGUE. Synthetic Communications, 2001, 31, 707-710.	2.1	1
81	High-Pressure Diels-Alder Reaction: Preparation of [2.2]Paracyclophane Derivatives. Polycyclic Aromatic Compounds, 2003, 23, 483-493.	2.6	1
82	Chapter 7. High Pressure: a Clean Activation Method for Sustainable Organic Synthesis. RSC Green Chemistry, 2009, , 237-274.	0.1	1