
Grissel Trujillo-de Santiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Culture of cancer spheroids and evaluation of anti-cancer drugs in 3D-printed miniaturized continuous stirred tank reactors (mCSTRs). Biofabrication, 2022, 14, 035007.	3.7	5
2	Fabrication of Maize-Based Nanoparticles at Home: A Research-Based Learning Activity. Education Sciences, 2022, 12, 307.	1.4	0
3	nurP28, a New-to-Nature Zein-Derived Peptide, Enhances the Therapeutic Effect of Docetaxel in Breast Cancer Monolayers and Spheroids. Molecules, 2022, 27, 2824.	1.7	5
4	Use of standard U-bottom and V-bottom well plates to generate neuroepithelial embryoid bodies. PLoS ONE, 2022, 17, e0262062.	1.1	4
5	Bubble-Patterned Films by Inkjet Printing and Gas Foaming. Coatings, 2022, 12, 806.	1.2	0
6	Advances in 3D bioprinting for the biofabrication of tumor models. Bioprinting, 2021, 21, e00120.	2.9	19
7	Colorimetric loop-mediated isothermal amplification (LAMP) for cost-effective and quantitative detection of SARS-CoV-2: the change in color in LAMP-based assays quantitatively correlates with viral copy number. Analytical Methods, 2021, 13, 169-178.	1.3	42
8	Engineering bioactive synthetic polymers for biomedical applications: a review with emphasis on tissue engineering and controlled release. Materials Advances, 2021, 2, 4447-4478.	2.6	40
9	Serological Test to Determine Exposure to SARS-CoV-2: ELISA Based on the Receptor-Binding Domain of the Spike Protein (S-RBDN318-V510) Expressed in Escherichia coli. Diagnostics, 2021, 11, 271.	1.3	17
10	Continuous chaotic bioprinting of skeletal muscle-like constructs. Bioprinting, 2021, 21, e00125.	2.9	35
11	Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. International Journal of Bioprinting, 2021, 7, 337.	1.7	23
12	Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows. Biofabrication, 2021, 13, 035015.	3.7	18
13	High-Throughput and Continuous Chaotic Bioprinting of Spatially Controlled Bacterial Microcosms. ACS Biomaterials Science and Engineering, 2021, 7, 2408-2419.	2.6	23
14	Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. Applied Physics Reviews, 2021, 8, 021404.	5.5	45
15	Three-Dimensional Printing Using a Maize Protein: Zein-Based Inks in Biomedical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 3964-3979.	2.6	18
16	Modeling vaccination strategies in an Excel spreadsheet: Increasing the rate of vaccination is more effective than increasing the vaccination coverage for containing COVID-19. PLoS ONE, 2021, 16, e0254430.	1.1	7
17	Fabrication of Multilayered Composite Nanofibers Using Continuous Chaotic Printing and Electrospinning: Chaotic Electrospinning. ACS Applied Materials & Interfaces, 2021, 13, 37455-37465.	4.0	8
18	Social Non-profit Bioentrepreneurship: Current Status and Future Impact on Global Health. Frontiers in Public Health, 2021, 9, 541191.	1.3	6

#	Article	IF	CITATIONS
19	Portable and Label-Free Quantitative Loop-Mediated Isothermal Amplification (LF-qLamp) for Reliable COVID-19 Diagnostics in Three Minutes of Reaction Time: Arduino-Based Detection System Assisted by a pH Microelectrode. Biosensors, 2021, 11, 386.	2.3	5
20	Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5722-5741.	5.9	37
21	Carbonâ€Nanogold Hierarchical Micro/Nano Topographies for Cell Guidance. Advanced Materials Interfaces, 2020, 7, 2000913.	1.9	5
22	Micro/Nano Hierarchical Platforms: Carbonâ€Nanogold Hierarchical Micro/Nano Topographies for Cell Guidance (Adv. Mater. Interfaces 22/2020). Advanced Materials Interfaces, 2020, 7, 2070124.	1.9	1
23	Portable and accurate diagnostics for COVID-19: Combined use of the miniPCR thermocycler and a well-plate reader for SARS-CoV-2 virus detection. PLoS ONE, 2020, 15, e0237418.	1.1	30
24	Biomaterials: Nanoâ€spaced Gold on Glassy Carbon Substrate for Controlling Cell Behavior (Adv.) Tj ETQq0 0 0	rgB <u>T</u> /Over	lock 10 Tf 50
25	Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication, 2020, 12, 035023.	3.7	43
26	Nanoâ€spaced Gold on Glassy Carbon Substrate for Controlling Cell Behavior. Advanced Materials Interfaces, 2020, 7, 2000238.	1.9	10
27	The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. Materials, 2019, 12, 2945.	1.3	103
28	Validation of use of the miniPCR thermocycler for Ebola and Zika virus detection. PLoS ONE, 2019, 14, e0215642.	1.1	20
29	Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 2953-2964.	2.6	66
30	Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials, 2019, 197, 345-367.	5.7	84
31	Analysis of the knowledge landscape of three-dimensional bioprinting in Latin America. International Journal of Bioprinting, 2019, 5, 240.	1.7	4
32	Gut-microbiota-on-a-chip: an enabling field for physiological research. Microphysiological Systems, 2018, 1, 1-1.	2.0	17
33	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Materials Horizons, 2018, 5, 813-822.	6.4	28
34	Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Critical Reviews in Biotechnology, 2017, 37, 53-68.	5.1	21
35	Bioprinting: Rapid Continuous Multimaterial Extrusion Bioprinting (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	11.1	9
36	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	23.3	236

#	Article	IF	CITATIONS
37	Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Advanced Healthcare Materials, 2017, 6, 1700015.	3.9	310
38	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	7.3	104
39	Expansion mini-microscopy: An enabling alternative in point-of-care diagnostics. Current Opinion in Biomedical Engineering, 2017, 1, 45-53.	1.8	11
40	Spatially and temporally controlled hydrogels for tissue engineering. Materials Science and Engineering Reports, 2017, 119, 1-35.	14.8	151
41	Rapid Continuous Multimaterial Extrusion Bioprinting. Advanced Materials, 2017, 29, 1604630.	11.1	275
42	Chitosan-functionalized poly(lactide-co-glycolide) nanoparticles: breaking through the brain's tight security gateway. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 74-84.	0.7	12
43	Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. Scientific Reports, 2016, 6, 22691.	1.6	44
44	Delivery strategies to control inflammatory response: Modulating M1–M2 polarization in tissue engineering applications. Journal of Controlled Release, 2016, 240, 349-363.	4.8	164
45	Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications. PLoS ONE, 2015, 10, e0122489.	1.1	6
46	Thermoplastic Processing of Blue Maize and White Sorghum Flours to Produce Bioplastics. Journal of Polymers and the Environment, 2015, 23, 72-82.	2.4	14
47	Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73, 254-271.	5.7	1,871
48	Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein. PLoS ONE, 2015, 10, e0135859.	1.1	15
49	Studying Mixing in Non-Newtonian Blue Maize Flour Suspensions Using Color Analysis. PLoS ONE, 2014, 9, e112954.	1.1	8
50	Strategies to Produce Thermoplastic Starch–Zein Blends: Effect on Compatibilization. Journal of Polymers and the Environment, 2014, 22, 508-524.	2.4	18
51	Continuous flow micro-bioreactors for the production of biopharmaceuticals: the effect of geometry, surface texture, and flow rate. Lab on A Chip, 2014, 14, 1320-1329.	3.1	30
52	A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions. Journal of Chemical Education, 2014, 91, 1729-1735.	1.1	6
53	Elaboration of a probiotic oblea from whey fermented using Lactobacillus acidophilus or Bifidobacterium infantis. Journal of Dairy Science, 2012, 95, 6897-6904.	1.4	10