
Si-Chong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of poly(p-dioxanone)-based degradable copolymers with enhanced thermal and hydrolytic stabilities. Chinese Chemical Letters, 2022, 33, 2151-2154.	9.0	13
2	Simultaneous toughening and strengthening of chitin-based composites via tensile-induced orientation and hydrogen bond reconstruction. Carbohydrate Polymers, 2022, 275, 118713.	10.2	5
3	Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties. Science China Chemistry, 2022, 65, 943-953.	8.2	17
4	Integration of upcycling and closed-loop recycling through alternative cyclization–depolymerization. Green Chemistry, 2022, 24, 4490-4497.	9.0	16
5	Structural and electronic engineering towards high-efficiency metal-free electrocatalysts for boosting oxygen evolution. Chemical Engineering Journal, 2022, 450, 138063.	12.7	7
6	A Self-supporting, Surface Carbonized Filter Paper Membrane for Efficient Water-in-Oil Emulsion Separation. Chinese Journal of Polymer Science (English Edition), 2021, 39, 181-188.	3.8	5
7	Superhydrophobic magnetic hollow carbon microspheres with hierarchical micro/nano-structure for ultrafast and highly-efficient multitasking oil-water separation. Carbon, 2021, 174, 70-78.	10.3	23
8	A solar evaporator based on hollow polydopamine nanotubes with all-in-one synergic design for highly-efficient water purification. Journal of Materials Chemistry A, 2021, 9, 15776-15786.	10.3	39
9	Effects of curing temperature on the structure and properties of epoxy resin-poly(Îμ-caprolactam) blends. Polymer, 2021, 228, 123940.	3.8	15
10	Toughening of Polylactide with High Tensile Strength via Constructing an Integrative Physical Crosslinking Network Based on Ionic Interactions. Macromolecules, 2021, 54, 291-301.	4.8	38
11	Low Loading of Tannic Acid-Functionalized WS ₂ Nanosheets for Robust Epoxy Nanocomposites. ACS Applied Nano Materials, 2021, 4, 10419-10429.	5.0	15
12	"Hot-pressing welded―composite membrane for separating oil-in-water emulsion with high structural stability. Composites Part B: Engineering, 2020, 202, 108449.	12.0	11
13	Green Fabrication of High-Performance Chitin Nanowhiskers/PVA Composite Films with a "Brick-and-Mortar―Structure. ACS Sustainable Chemistry and Engineering, 2020, 8, 17807-17815.	6.7	18
14	Highly-efficient, Rapid and continuous separation of surfactant-stabilized Oil/Water emulsions by selective under-liquid adhering emulsified droplets. Journal of Hazardous Materials, 2020, 400, 123132.	12.4	28
15	Fe ₃ O ₄ Nanoparticle/N-Doped Carbon Hierarchically Hollow Microspheres for Broadband and High-Performance Microwave Absorption at an Ultralow Filler Loading. ACS Applied Materials & Interfaces, 2020, 12, 18952-18963.	8.0	79
16	Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. Journal of Energy Chemistry, 2020, 50, 248-259.	12.9	35
17	Thiazolium as Singleâ€Group Bifunctional Catalyst for Selectively Bulk Melt ROP of Cyclic Esters. ChemCatChem, 2019, 11, 3388-3392.	3.7	6
18	NIR light manipulated "paper art―for customizing devices with sophisticated structure from DA-epoxy/graphene composites. Composites Part B: Engineering, 2019, 177, 107369.	12.0	6

SI-CHONG CHEN

#	Article	IF	CITATIONS
19	Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 35987-35998.	8.0	140
20	Heterogeneous catalysts based on built-in N-heterocyclic carbenes with high removability, recoverability and reusability for ring-opening polymerization of cyclic esters. Polymer Chemistry, 2019, 10, 1526-1536.	3.9	9
21	Reusable and Recyclable Superhydrophilic Electrospun Nanofibrous Membranes with In Situ Co-cross-linked Polymer–Chitin Nanowhisker Network for Robust Oil-in-Water Emulsion Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 1753-1762.	6.7	62
22	Regulating the crystallizing and rheological behaviors of poly(butylene succinate) by incorporating novel macromolecular ionomers. Journal of Applied Polymer Science, 2018, 135, 45545.	2.6	2
23	Simultaneously Porous Structure and Chemical Anchor: A Multifunctional Composite by One-Step Mechanochemical Strategy toward High-Performance and Safe Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2018, 10, 41359-41369.	8.0	12
24	Polymeric Microcapsules with Sustainable Core and Hierarchical Shell toward Superhydrophobicity and Sunlight-Induced Self-Healing Performance. Industrial & Engineering Chemistry Research, 2018, 57, 14517-14526.	3.7	10
25	Toward Super-Tough Poly(<scp>l</scp> -lactide) via Constructing Pseudo-Cross-link Network in Toughening Phase Anchored by Stereocomplex Crystallites at the Interface. ACS Applied Materials & Interfaces, 2018, 10, 26594-26603.	8.0	41
26	Full-Biobased Nanofiber Membranes toward Decontamination of Wastewater Containing Multiple Pollutants. ACS Sustainable Chemistry and Engineering, 2018, 6, 11783-11792.	6.7	59
27	Photothermal Conversion Triggered Precisely Targeted Healing of Epoxy Resin Based on Thermoreversible Diels–Alder Network and Amino-Functionalized Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 20797-20807.	8.0	95
28	Concurrent Superhydrophobicity and Thermal Energy Storage of Microcapsule with Superior Thermal Stability and Durability. ACS Sustainable Chemistry and Engineering, 2017, 5, 7759-7767.	6.7	23
29	Preparation of polymer nanocomposites with enhanced mechanical properties using hybrid of graphene and partially wrapped multi-wall carbon nanotube as nanofiller. Chinese Chemical Letters, 2017, 28, 201-205.	9.0	13
30	Poly(ethylene imine)â€Triggered Morphological Change of Anisotropic Micelles from Direct Aqueous Selfâ€Assembly of an Amphiphilic Diblock Copolymer. Macromolecular Chemistry and Physics, 2016, 217, 2165-2171.	2.2	0
31	Construction of conductive percolation network with high efficiency in composite film via a novel sparsely partial wrapping strategy. Composites Science and Technology, 2016, 136, 39-45.	7.8	6
32	Preparation and characterization of Poly(vinyl alcohol)/graphene nanocomposite with enhanced thermal stability using PEtVIm-Br as stabilizer and compatibilizer. Polymer Degradation and Stability, 2016, 131, 42-52.	5.8	15
33	Biodegradable polylactide based materials with improved crystallinity, mechanical properties and rheological behaviour by introducing a long-chain branched copolymer. RSC Advances, 2015, 5, 42162-42173.	3.6	38
34	Synthesis and characterization of a polyurethane ionene/zinc chloride complex with antibacterial properties. RSC Advances, 2015, 5, 12423-12433.	3.6	9
35	Morphological Control of Anisotropic Self-Assemblies from Alternating Poly(<i>p</i> -dioxanone)-poly(ethylene glycol) Multiblock Copolymer Depending on the Combination Effect of Crystallization and Micellization. Langmuir, 2015, 31, 6971-6980.	3.5	18
36	Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Composites Science and Technology, 2015, 115, 60-65.	7.8	80

SI-CHONG CHEN

#	Article	IF	CITATIONS
37	Direct Aqueous Self-Assembly of an Amphiphilic Diblock Copolymer toward Multistimuli-Responsive Fluorescent Anisotropic Micelles. ACS Nano, 2015, 9, 4649-4659.	14.6	53
38	Preparation of Core–Shell Nanofibers with Selectively Localized CNTs from Shish Kebabâ€like Hierarchical Composite Micelles. Macromolecular Rapid Communications, 2014, 35, 1450-1457.	3.9	7
39	Reversible photoswitching aggregation and dissolution of spiropyran-functionalized copolymer and light-responsive FRET process. Chinese Chemical Letters, 2014, 25, 389-396.	9.0	27
40	Thermoplastic PVA/PLA Blends with Improved Processability and Hydrophobicity. Industrial & Engineering Chemistry Research, 2014, 53, 17355-17361.	3.7	65
41	Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. Journal of Materials Chemistry A, 2014, 2, 8416.	10.3	42
42	Multi-stimuli sensitive supramolecular hydrogel formed by host–guest interaction between PNIPAM-Azo and cyclodextrin dimers. RSC Advances, 2014, 4, 4955.	3.6	66
43	Fennel-like nanoaggregates based on polysaccharide derivatives and their application in drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 113, 501-504.	5.0	9
44	Crystallization induced micellization of poly(p-dioxanone)-block-polyethylene glycol diblock copolymer functionalized with pyrene moiety. Chinese Chemical Letters, 2014, 25, 1311-1317.	9.0	8
45	Temperature dependent morphological evolution and the formation mechanism of anisotropic nano-aggregates from a crystalline-coil block copolymer of poly(p-dioxanone) and poly(ethylene) Tj ETQq1 1 0.7	84 3.1 74 rgB	T 1 verlock
46	Nanofibers with Very Fine Core–Shell Morphology from Anisotropic Micelle of Amphiphilic Crystalline-Coil Block Copolymer. ACS Nano, 2013, 7, 4892-4901.	14.6	20
47	SYNTHESIS AND PHOTO-RESPONSIVE BEHAVIOR OF AN AZOBENZENE-CONTAINING AMPHIPHILIC TIRBLOCK COPOLYMER. Acta Polymerica Sinica, 2013, 013, 788-793.	0.0	1
48	Crystallization and morphology of a polymer blend based on linear PPDO and branched poly(p-dioxanone)–poly(lactic acid) block copolymer with immiscible blocks. Polymer Chemistry, 2012, 3, 2537.	3.9	11
49	Dynamic Origin and Thermally Induced Evolution of New Selfâ€Assembled Aggregates from an Amphiphilic Combâ€Like Graft Copolymer: A Multiscale and Multimorphological Procedure. Chemistry - A European Journal, 2012, 18, 12237-12241.	3.3	22
50	Synthesis and micellization of amphiphilic multi-branched poly(p-dioxanone)-block-poly(ethylene) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50
51	Electrospinning fabrication and characterization of poly(vinyl alcohol)/layered double hydroxides composite fibers. Journal of Applied Polymer Science, 2012, 126, 1556-1563.	2.6	16
52	Novel "star anise―like nano aggregate prepared by self-assembling of preformed microcrystals from branched crystalline-coil alternating multi-block copolymer. Chemical Communications, 2011, 47, 4198.	4.1	32
53	Preparation and Rheological Behaviors of Thermoplastic Poly(vinyl alcohol) Modified by Lactic Acid. Industrial & Engineering Chemistry Research, 2011, 50, 9123-9130.	3.7	22
54	Well-Defined Amphiphilic Biodegradable Comb-Like Graft Copolymers: Their Unique Architecture-Determined LCST and UCST Thermoresponsivity. Macromolecules, 2011, 44, 999-1008.	4.8	65

SI-CHONG CHEN

#	Article	IF	CITATIONS
55	A facile approach to preparation of long-chain-branched poly(p-dioxanone). European Polymer Journal, 2010, 46, 24-33.	5.4	10
56	Wellâ€defined amphiphilic poly(<i>p</i> â€dioxanone)â€grafted poly(vinyl alcohol) copolymers: Synthesis and micellization. Journal of Polymer Science Part A, 2010, 48, 4811-4822.	2.3	16
57	Notice of Retraction: How to learn polymer science well for university students whose major is not polymer science. , 2010, , .		0
58	An efficient approach to synthesize polysaccharidesâ€ <i>graft</i> â€poly(<i>p</i> â€dioxanone) copolymers as potential drug carriers. Journal of Polymer Science Part A, 2009, 47, 5344-5353.	2.3	14
59	A water-soluble PPDO/PEG alternating multiblock copolymer: Synthesis, characterization, and its gel–sol transition behavior. European Polymer Journal, 2009, 45, 1190-1197.	5.4	16
60	Synthesis and Properties of Thermoplastic Poly(vinyl Alcohol)-‹i>Graft-Lactic Acid Copolymers. Industrial & Engineering Chemistry Research, 2009, 48, 788-793.	3.7	48
61	A biodegradable copolymer from coupling poly(pdioxanone) with poly(ethylene succinate) via toluene-2,4- diisocyanate. E-Polymers, 2009, 9, .	3.0	0
62	Synthesis of poly(lactic acid-b-p-dioxanone) block copolymers from ring opening polymerization of p-dioxanone by poly(L-lactic acid) macroinitiators. Polymer Bulletin, 2008, 61, 139-146.	3.3	25
63	A new approach to prepare high molecular weight poly(p-dioxanone) by chain-extending from dihydroxyl terminated propolymers. European Polymer Journal, 2008, 44, 465-474.	5.4	20
64	Novel Biodegradable Poly(1,4-dioxan-2-one) Grafted Soy Protein Copolymer: Synthesis and Characterization. Industrial & Engineering Chemistry Research, 2008, 47, 8233-8238.	3.7	21
65	In vitro degradation of biodegradable blending materials based on poly(p-dioxanone) and poly(vinyl) Tj ETQq1 1 Research - Part A, 2007, 80A, 453-465.	0.784314 4.0	rgBT /Overlo 24
66	Copolymerization of poly(vinyl alcohol)-graft-poly(1,4-dioxan-2-one) with designed molecular structure by a solid-state polymerization method. Journal of Polymer Science Part A, 2006, 44, 3083-3091.	2.3	15
67	Thermal properties and non-isothermal crystallization behavior of biodegradable poly(p-dioxanone)/poly(vinyl alcohol) blends. Polymer International, 2006, 55, 383-390.	3.1	29
68	A novel biodegradable poly(p-dioxanone)-grafted poly(vinyl alcohol) copolymer with a controllable in vitro degradation. Polymer, 2006, 47, 32-36.	3.8	42
69	ABA triblock copolymers from poly(p-dioxanone) and poly(ethylene glycol). Journal of Applied Polymer Science, 2006, 102, 1092-1097.	2.6	16
70	Effect of PEG on the crystallization of PPDO/PEG blends. European Polymer Journal, 2005, 41, 1243-1250.	5.4	58