

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026270/publications.pdf Version: 2024-02-01

**FI\\//II

#	Article	IF	CITATIONS
1	Rancidity-induced rice bran protein oxidation causes kidney injury in mice via oxidative stress and inflammatory response. Journal of Cereal Science, 2022, 104, 103424.	3.7	4
2	Effect of rice bran rancidity on the structure and antioxidant properties of rice bran soluble dietary fiber. Journal of Cereal Science, 2022, 105, 103469.	3.7	5
3	Rice bran protein oxidation induced by rancidity alters the gut microbiota and intestinal permeability in mice. Food and Function, 2022, 13, 5430-5441.	4.6	6
4	Rancidity-induced protein oxidation affects the interfacial dynamic properties and the emulsion rheological behavior of rice bran protein. Food Hydrocolloids, 2022, 131, 107794.	10.7	13
5	Effects of oxidized rice bran protein induced by rancidity on the hepatic function in mice. Food and Function, 2022, 13, 6089-6102.	4.6	3
6	Effects of rice bran rancidity on oxidation, structural characteristics and interfacial properties of rice bran globulin. Food Hydrocolloids, 2021, 110, 106123.	10.7	42
7	Effects of protein oxidation induced by rice bran rancidity on the structure and functionality of rice bran glutelin. LWT - Food Science and Technology, 2021, 149, 111874.	5.2	19
8	Effect of rice bran rancidity on the emulsion stability of rice bran protein and structural characteristics of interface protein. Food Hydrocolloids, 2021, 121, 107006.	10.7	36
9	Effects of oxidative modification by malondialdehyde on the in vitro digestion properties of rice bran protein. Journal of Cereal Science, 2021, 97, 103158.	3.7	31
10	Effects of malondialdehydeâ€induced protein oxidation on the structural characteristics of rice protein. International Journal of Food Science and Technology, 2020, 55, 760-768.	2.7	21
11	Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein. LWT - Food Science and Technology, 2020, 120, 108943.	5.2	63
12	Effects of oxidative modification by 13-hydroperoxyoctadecadienoic acid on the structure and functional properties of rice protein. Food Research International, 2020, 132, 109096.	6.2	21
13	Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased inÂvitro bioactivity and inÂvivo bioavailability. Food Hydrocolloids, 2018, 77, 834-842.	10.7	66
14	Effects of oxidative modification on thermal aggregation and gel properties of soy protein by peroxyl radicals. International Journal of Food Science and Technology, 2011, 46, 1891-1897.	2.7	49
15	Structural modification of soy protein by the lipid peroxidation product acrolein. LWT - Food Science and Technology, 2010, 43, 133-140.	5.2	98
16	Structural modification of soy protein by the lipid peroxidation product malondialdehyde. Journal of the Science of Food and Agriculture, 2009, 89, 1416-1423.	3.5	77
17	Structural modification of soy protein by 13-hydroperoxyoctadecadienoic acid. European Food Research and Technology, 2009, 229, 771-778.	3.3	23
18	Oxidative modification of soy protein by peroxyl radicals. Food Chemistry, 2009, 116, 295-301.	8.2	124