Ayesha Aziz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/202620/publications.pdf Version: 2024-02-01

Δνεςμλ Δ717

#	Article	IF	CITATIONS
1	Turning the Page: Advancing Detection Platforms for Sulfate Reducing Bacteria and their Perks. Chemical Record, 2022, 22, .	5.8	11
2	Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: A textile sensor for H2O2 detection in clinical cancer tissues. Chemical Engineering Journal, 2022, 427, 131398.	12.7	54
3	Boosting electrocatalytic activity of carbon fiber@fusiform-like copper-nickel LDHs: Sensing of nitrate as biomarker for NOB detection. Journal of Hazardous Materials, 2022, 422, 126907.	12.4	34
4	Advancing interfacial properties of carbon cloth via anodic-induced self-assembly of MOFs film integrated with α-MnO2: A sustainable electrocatalyst sensing acetylcholine. Journal of Hazardous Materials, 2022, 426, 128133.	12.4	19
5	Boosting the Electrochemical Performance of PI-5-CA/C-SWCNT Nanohybrid for Sensitive Detection of E. coli O157:H7 From the Real Sample. Frontiers in Chemistry, 2022, 10, 843859.	3.6	3
6	Extension of duplex specific nuclease sensing application with RNA aptamer. Talanta, 2022, 242, 123314.	5.5	7
7	Showcasing advanced electrocatalytic behavior of layered double hydroxide wrapped on carbon nanotubes: Real-time monitoring of L-cysteine in biological matrices. Chemical Engineering Journal, 2022, 440, 135985.	12.7	21
8	Tuning the Redox Chemistry of Copper Oxide Nanoarchitectures Integrated with rGOP <i>via</i> Facet Engineering: Sensing H ₂ S toward SRB Detection. ACS Applied Materials & Interfaces, 2022, 14, 19480-19490.	8.0	13
9	A Multicomponent Polymer-Metal-Enzyme System as Electrochemical Biosensor for H2O2 Detection. Frontiers in Chemistry, 2022, 10, 874965.	3.6	5
10	Engineering MOFs derived metal oxide nanohybrids: Towards electrochemical sensing of catechol in tea samples. Food Chemistry, 2022, 395, 133642.	8.2	23
11	Detecting and inactivating severe acute respiratory syndrome coronavirus-2 under the auspices of electrochemistry. Current Research in Chemical Biology, 2021, 1, 100001.	2.9	18
12	Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosensors and Bioelectronics, 2021, 177, 112973.	10.1	66
13	COVID-19 Impacts, Diagnosis and Possible Therapeutic Techniques: A Comprehensive Review. Current Pharmaceutical Design, 2021, 27, 1170-1184.	1.9	13
14	Trends in biosensing platforms for SARS-CoV-2 detection: A critical appraisal against standard detection tools. Current Opinion in Colloid and Interface Science, 2021, 52, 101418.	7.4	46
15	Tuning Electrocatalytic Aptitude by Incorporating α-MnO ₂ Nanorods in Cu-MOF/rGO/CuO Hybrids: Electrochemical Sensing of Resorcinol for Practical Applications. ACS Applied Materials & Interfaces, 2021, 13, 31462-31473.	8.0	64
16	Topical advances in nanomaterials based electrochemical sensors for resorcinol detection. Trends in Environmental Analytical Chemistry, 2021, 31, e00138.	10.3	34
17	Rice-Spikelet-like Copper Oxide Decorated with Platinum Stranded in the CNT Network for Electrochemical <i>In Vitro</i> Detection of Serotonin. ACS Applied Materials & Interfaces, 2021, 13, 6023-6033.	8.0	64
18	The role of biosensors in coronavirus disease-2019 outbreak. Current Opinion in Electrochemistry, 2020, 23, 174-184.	4.8	100

Ayesha Aziz

#	Article	IF	CITATIONS
19	Facet-energy inspired metal oxide extended hexapods decorated with graphene quantum dots: sensitive detection of bisphenol A in live cells. Nanoscale, 2020, 12, 9014-9023.	5.6	35
20	High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosensors and Bioelectronics, 2020, 157, 112163.	10.1	150
21	Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review. Mikrochimica Acta, 2019, 186, 671.	5.0	91
22	Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Mikrochimica Acta, 2019, 186, 337.	5.0	41
23	Hierarchical CNTs@CuMn Layered Double Hydroxide Nanohybrid with Enhanced Electrochemical Performance in H ₂ S Detection from Live Cells. Analytical Chemistry, 2019, 91, 3912-3920.	6.5	127
24	Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Mikrochimica Acta, 2019, 186, 61.	5.0	133
25	Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Analytica Chimica Acta, 2019, 1047, 197-207.	5.4	98
26	Facet-Inspired Core–Shell Gold Nanoislands on Metal Oxide Octadecahedral Heterostructures: High Sensing Performance toward Sulfide in Biotic Fluids. ACS Applied Materials & Interfaces, 2018, 10, 36675-36685.	8.0	80
27	A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Advances in Colloid and Interface Science, 2018, 262, 21-38.	14.7	107
28	Core-shell iron oxide-layered double hydroxide: High electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosensors and Bioelectronics, 2017, 97, 352-359.	10.1	135
29	Metal oxide intercalated layered double hydroxide nanosphere: With enhanced electrocatalyic activity towards H 2 O 2 for biological applications. Sensors and Actuators B: Chemical, 2017, 239, 243-252.	7.8	129
30	Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Analytica Chimica Acta, 2015, 898, 34-41.	5.4	50