
Jop H Van Berlo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026175/publications.pdf Version: 2024-02-01

IOD H VAN REPLO

#	Article	IF	CITATIONS
1	Divergent Cardiac Effects of Angiotensin II and Isoproterenol Following Juvenile Exposure to Doxorubicin. Frontiers in Cardiovascular Medicine, 2022, 9, 742193.	1.1	3
2	A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 2021, 12, 4808.	5.8	13
3	Genetic Lineage Tracing of Non-cardiomyocytes in Mice. Methods in Molecular Biology, 2021, 2158, 323-336.	0.4	2
4	Cardiac Resident Macrophages Prevent Fibrosis and Stimulate Angiogenesis. Circulation Research, 2021, 129, 1086-1101.	2.0	89
5	The Role of TGF—β Signaling in Cardiomyocyte Proliferation. Current Heart Failure Reports, 2020, 17, 225-233.	1.3	21
6	<i>Abcg2</i> â€expressing side population cells contribute to cardiomyocyte renewal through fusion. FASEB Journal, 2020, 34, 5642-5657.	0.2	9
7	Isolation of Cardiomyocytes from Fixed Hearts for Immunocytochemistry and Ploidy Analysis. Journal of Visualized Experiments, 2020, , .	0.2	1
8	Isolation of Cardiomyocytes from Fixed Hearts for Immunocytochemistry and Ploidy Analysis. Journal of Visualized Experiments, 2020, , .	0.2	3
9	Cardiac c-Kit Biology Revealed by Inducible Transgenesis. Circulation Research, 2018, 123, 57-72.	2.0	32
10	Development of a Click-Chemistry Reagent Compatible with Mass Cytometry. Scientific Reports, 2018, 8, 6657.	1.6	5
11	van Berlo et al. reply. Nature, 2018, 555, E18-E18.	13.7	8
12	Evidence for Minimal Cardiogenic Potential of Stem Cell Antigen 1–Positive Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2960-2962.	1.6	35
13	A Small Peptide Ac-SDKP Inhibits Radiation-Induced Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e004867.	1.6	28
14	A conserved HH-Cli1-Mycn network regulates heart regeneration from newt to human. Nature Communications, 2018, 9, 4237.	5.8	57
15	The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature, 2017, 545, 93-97.	13.7	294
16	Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit ⁺ Cells. Circulation, 2017, 136, 2359-2372.	1.6	20
17	BEX1 is an RNA-dependent mediator of cardiomyopathy. Nature Communications, 2017, 8, 1875.	5.8	33

18 Regenerative Mechanisms of the Adult Injured and Failing Heart. , 2017, , 377-400.

JOP H VAN BERLO

#	Article	IF	CITATIONS
19	The Role of Cardiac Side Population Cells in Cardiac Regeneration. Frontiers in Cell and Developmental Biology, 2016, 4, 102.	1.8	22
20	DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circulation Research, 2016, 119, 249-260.	2.0	53
21	Most of the Dust Has Settled. Circulation Research, 2016, 118, 17-19.	2.0	40
22	Chromatin remodeling permits cardiac hypertrophy to develop. Journal of Molecular and Cellular Cardiology, 2015, 89, 119-121.	0.9	4
23	STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 87, 38-47.	0.9	97
24	Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor Î ² Signaling and Cardiac Remodeling. Molecular and Cellular Biology, 2015, 35, 2154-2164.	1.1	70
25	An emerging consensus on cardiac regeneration. Nature Medicine, 2014, 20, 1386-1393.	15.2	222
26	c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature, 2014, 509, 337-341.	13.7	723
27	Unraveling the complexities of cardiac remodeling and hypertrophy — High-content screening and computational modeling. Journal of Molecular and Cellular Cardiology, 2014, 72, 360-363.	0.9	0
28	Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. Journal of Molecular and Cellular Cardiology, 2013, 65, 108-119.	0.9	105
29	Molecular basis of physiological heart growth: fundamental concepts and new players. Nature Reviews Molecular Cell Biology, 2013, 14, 38-48.	16.1	439
30	Unrestrained p38 MAPK Activation in <i>Dusp1/4</i> Double-Null Mice Induces Cardiomyopathy. Circulation Research, 2013, 112, 48-56.	2.0	78
31	Signaling effectors underlying pathologic growth and remodeling of the heart. Journal of Clinical Investigation, 2013, 123, 37-45.	3.9	380
32	Parsing the Roles of the Transcription Factors GATA-4 and GATA-6 in the Adult Cardiac Hypertrophic Response. PLoS ONE, 2013, 8, e84591.	1.1	30
33	Placental Growth Factor Regulates Cardiac Adaptation and Hypertrophy Through a Paracrine Mechanism. Circulation Research, 2011, 109, 272-280.	2.0	84
34	Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12331-12336.	3.3	89
35	The Transcription Factor GATA-6 Regulates Pathological Cardiac Hypertrophy. Circulation Research, 2010, 107, 1032-1040.	2.0	88

36 Sudden Death in Dilated Cardiomyopathy and Skeletal Myopathies. , 2008, , 627-642.

0

JOP H VAN BERLO

#	Article	IF	CITATIONS
37	Severe Myocardial Fibrosis Caused by a Deletion of the 5' End of the Lamin A/C Gene. Journal of the American College of Cardiology, 2007, 49, 2430-2439.	1.2	79
38	Primary Prevention of Sudden Death in Patients with Lamin A/C Gene Mutations. New England Journal of Medicine, 2006, 354, 209-210.	13.9	323
39	Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death?. Journal of Molecular Medicine, 2005, 83, 79-83.	1.7	388
40	Often seen but rarely recognised: cardiac complications of lamin A/C mutations. European Heart Journal, 2004, 25, 812-814.	1.0	34
41	Galectin-3 Marks Activated Macrophages in Failure-Prone Hypertrophied Hearts and Contributes to Cardiac Dysfunction. Circulation, 2004, 110, 3121-3128.	1.6	784
42	Polymorphisms in the RAS and cardiac function. International Journal of Biochemistry and Cell Biology, 2003, 35, 932-943.	1.2	19
43	108th ENMC International Workshop, 3rd Workshop of the MYO-CLUSTER project: EUROMEN, 7th International Emery-Dreifuss Muscular Dystrophy (EDMD) Workshop, 13–15 September 2002, Naarden, The Netherlands. Neuromuscular Disorders, 2003, 13, 508-515.	0.3	78