Lilei Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026096/publications.pdf

Version: 2024-02-01

		279798	223800
84	2,414	23	46
papers	citations	h-index	g-index
86	86	86	3004
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity. Cardiovascular Research, 2022, 118, 1821-1834.	3.8	21
2	Deceleration Capacity Improves Prognostic Accuracy of Relative Increase and Final Coronary Physiology in Patients With Non-ST-Elevation Acute Coronary Syndrome. Frontiers in Cardiovascular Medicine, 2022, 9, 848499.	2.4	5
3	Novel Insight Into Long-Term Risk of Major Adverse Cardiovascular and Cerebrovascular Events Following Lower Extremity Arteriosclerosis Obliterans. Frontiers in Cardiovascular Medicine, 2022, 9, 853583.	2.4	1
4	Editorial: Autonomic Nervous System and Cardiovascular Diseases: From Brain to Heart. Frontiers in Physiology, 2022, 13, 884832.	2.8	1
5	Enrichment of the Postdischarge GRACE Score With Deceleration Capacity Enhances the Prediction Accuracy of the Long-Term Prognosis After Acute Coronary Syndrome. Frontiers in Cardiovascular Medicine, 2022, 9, 888753.	2.4	1
6	Self-powered pacemaker based on all-in-one flexible piezoelectric nanogenerator. Nano Energy, 2022, 99, 107420.	16.0	19
7	Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model. Basic Research in Cardiology, 2022, 117, .	5.9	15
8	Sympathetic Nervous System Mediates Cardiac Remodeling After Myocardial Infarction in a Circadian Disruption Model. Frontiers in Cardiovascular Medicine, 2021, 8, 668387.	2.4	18
9	Alteration of Autonomic Nervous System Is Associated With Severity and Outcomes in Patients With COVID-19. Frontiers in Physiology, 2021, 12, 630038.	2.8	50
10	The concordance between the evolutionary trend and the clinical manifestation of the two SARS-CoV-2 variants. National Science Review, 2021, 8, nwab073.	9.5	2
11	Novel Insights Into the Interaction Between the Autonomic Nervous System and Inflammation on Coronary Physiology: A Quantitative Flow Ratio Study. Frontiers in Cardiovascular Medicine, 2021, 8, 700943.	2.4	9
12	Relationship Between Immunoinflammation and Coronary Physiology Evaluated by Quantitative Flow Ratio in Patients With Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 714276.	2.4	6
13	Performance-enhanced flexible piezoelectric nanogenerator via layer-by-layer assembly for self-powered vagal neuromodulation. Nano Energy, 2021, 89, 106319.	16.0	33
14	The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias. Frontiers in Physiology, 2020, 11, 1113.	2.8	23
15	Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography. Scientific Reports, 2020, 10, 19196.	3.3	306
16	Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS oVâ€2 and Other Respiratory Viruses. Small, 2020, 16, e2002169.	10.0	169
17	Vagal Stimulation and Arrhythmias. Journal of Atrial Fibrillation, 2020, 13, 2398.	0.5	8
18	Non-invasive Autonomic Neuromodulation Is Opening New Landscapes for Cardiovascular Diseases. Frontiers in Physiology, 2020, 11, 550578.	2.8	12

#	Article	IF	Citations
19	Atrial Fibrillation: Mechanisms and Management. Cardiology Research and Practice, 2019, 2019, 1-2.	1.1	2
20	The role of low-level vagus nerve stimulation in cardiac therapy. Expert Review of Medical Devices, 2019, 16, 675-682.	2.8	16
21	Near Infrared Neuromodulation: Precise Modulation of Gold Nanorods for Protecting against Malignant Ventricular Arrhythmias via Nearâ€Infrared Neuromodulation (Adv. Funct. Mater. 36/2019). Advanced Functional Materials, 2019, 29, 1970251.	14.9	0
22	Precise Modulation of Gold Nanorods for Protecting against Malignant Ventricular Arrhythmias via Nearâ€Infrared Neuromodulation. Advanced Functional Materials, 2019, 29, 1902128.	14.9	31
23	Autonomic Neuromodulation for Preventing and Treating Ventricular Arrhythmias. Frontiers in Physiology, 2019, 10, 200.	2.8	18
24	Bone marrow sympathetic activation regulates post-myocardial infarction megakaryocyte expansion but not platelet production. Biochemical and Biophysical Research Communications, 2019, 513, 99-104.	2.1	4
25	Gut microbe-derived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine, 2019, 44, 656-664.	6.1	25
26	Ablation of Neuroaxial in Patients with Ventricular Tachycardia. Cardiac Electrophysiology Clinics, 2019, 11, 625-634.	1.7	1
27	The effects of interleukin 17A on left stellate ganglion remodeling are mediated by neuroimmune communication in normal structural hearts. International Journal of Cardiology, 2019, 279, 64-71.	1.7	9
28	A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. International Journal of Cardiology, 2018, 255, 92-98.	1.7	85
29	Leptin injection into the left stellate ganglion augments ischemia-related ventricular arrhythmias via sympathetic nerve activation. Heart Rhythm, 2018, 15, 597-606.	0.7	23
30	Regulation of the NRG1/ErbB4 Pathway in the Intrinsic Cardiac Nervous System Is a Potential Treatment for Atrial Fibrillation. Frontiers in Physiology, 2018, 9, 1082.	2.8	7
31	Reply: The emergence of clarifying the role of gut microbes in arrhythmia. International Journal of Cardiology, 2018, 271, 122.	1.7	0
32	Targeted Ganglionated Plexi Denervation Using Magnetic Nanoparticles Carrying Calcium Chloride Payload. JACC: Clinical Electrophysiology, 2018, 4, 1347-1358.	3.2	10
33	Mast cells modulate the pathogenesis of leptin-induced left stellate ganglion activation in canines. International Journal of Cardiology, 2018, 269, 259-264.	1.7	8
34	Renal sympathetic stimulation and ablation affect ventricular arrhythmia by modulating autonomic activity in a cesium-induced long QT canine model. Heart Rhythm, 2017, 14, 912-919.	0.7	19
35	Impacts of Renal Sympathetic Activation on Atrial Fibrillation: The Potential Role of the Autonomic Cross Talk Between Kidney and Heart. Journal of the American Heart Association, 2017, 6, .	3.7	23
36	Blocking the Nav1.8 channel in the left stellate ganglion suppresses ventricular arrhythmia induced by acute ischemia in a canine model. Scientific Reports, 2017, 7, 534.	3.3	14

#	Article	IF	CITATIONS
37	Atrial Fibrillation in Acute Obstructive Sleep Apnea: Autonomic Nervous Mechanism and Modulation. Journal of the American Heart Association, 2017, 6, .	3.7	40
38	Low-Level Tragus Stimulation for the Treatment of Ischemia and Reperfusion Injury in Patients With ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Interventions, 2017, 10, 1511-1520.	2.9	108
39	Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model. International Journal of Cardiology, 2017, 248, 286-293.	1.7	45
40	Optogenetic Modulation of CardiacÂSympathetic Nerve Activity toÂPrevent VentricularÂArrhythmias. Journal of the American College of Cardiology, 2017, 70, 2778-2790.	2.8	75
41	The Use of Noninvasive Vagal Nerve Stimulation to Inhibit Sympathetically Induced Sinus Node Acceleration: A Potential Therapeutic Approach for Inappropriate Sinus Tachycardia. Journal of Cardiovascular Electrophysiology, 2016, 27, 217-223.	1.7	16
42	Neuronal Na _v 1.8 Channels as a Novel Therapeutic Target of Acute Atrial Fibrillation Prevention. Journal of the American Heart Association, 2016, 5, .	3.7	20
43	Low-level carotid baroreflex stimulation suppresses atrial fibrillation by inhibiting left stellate ganglion activity in an acute canine model. Heart Rhythm, 2016, 13, 2203-2212.	0.7	14
44	Noninvasive low-frequency electromagnetic stimulation of the left stellate ganglion reduces myocardial infarction-induced ventricular arrhythmia. Scientific Reports, 2016, 6, 30783.	3.3	25
45	Lowâ€Level Vagus Nerve Stimulation Attenuates Myocardial Ischemic Reperfusion Injury by Antioxidative Stress and Antiapoptosis Reactions in Canines. Journal of Cardiovascular Electrophysiology, 2016, 27, 224-231.	1.7	52
46	Chronic Intermittent Low-Level Stimulation of Tragus Reduces CardiacÂAutonomic Remodeling and Ventricular Arrhythmia Inducibility inÂaÂPost-Infarction Canine Model. JACC: Clinical Electrophysiology, 2016, 2, 330-339.	3.2	46
47	Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling. Heart Rhythm, 2016, 13, 274-281.	0.7	36
48	Renal denervation for the treatment of atrial fibrillation in hypertensive patients or beyond?. International Journal of Cardiology, 2015, 189, 59-60.	1.7	1
49	Klotho protein: A potential therapeutic agent during myocardial ischemia and reperfusion. International Journal of Cardiology, 2015, 191, 227-228.	1.7	8
50	Low-Level Baroreceptor Stimulation Suppresses Atrial Fibrillation by Inhibiting Ganglionated Plexus Activity. Canadian Journal of Cardiology, 2015, 31, 767-774.	1.7	21
51	Interleukin-17 inhibition: An important target for attenuating myocardial ischemia and reperfusion injury. International Journal of Cardiology, 2015, 198, 89-90.	1.7	8
52	Vagus nerve stimulation: A spear role or a shield role in atrial fibrillation?. International Journal of Cardiology, 2015, 198, 115-116.	1.7	3
53	Low-level carotid baroreceptor stimulation: A promising feasible modulator for ventricular and atrial arrhythmias. International Journal of Cardiology, 2015, 199, 430-431.	1.7	3
54	Low level non-invasive vagus nerve stimulation: A novel feasible therapeutic approach for atrial fibrillation. International Journal of Cardiology, 2015, 182, 189-190.	1.7	13

#	Article	IF	CITATIONS
55	The use of low-level electromagnetic fields to suppress atrial fibrillation. Heart Rhythm, 2015, 12, 809-817.	0.7	23
56	DEFEAT-HF Trial: The potential causes for the negative result. International Journal of Cardiology, 2015, 191, 271-272.	1.7	2
57	Noninvasive vagus nerve stimulation: A novel feasible approach for cardioprotection during ischemia–reperfusion injury. International Journal of Cardiology, 2015, 191, 13-14.	1.7	2
58	Cardiac autonomic tone modulators: Promising feasible options for heart failure with hyper-sympathetic activity. International Journal of Cardiology, 2015, 198, 185-186.	1.7	3
59	Noninvasive vagus nerve stimulation: A novel promising modulator for cardiac autonomic nerve system dysfunction. International Journal of Cardiology, 2015, 187, 338-339.	1.7	9
60	Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm, 2015, 12, 1628-1635.	0.7	68
61	Vitamin D: A potential important therapeutic target for atrial fibrillation. International Journal of Cardiology, 2015, 198, 91-92.	1.7	3
62	Tumor necrosis factor-α inhibitor: A promising therapeutic approach for attenuating myocardial ischemia–reperfusion by antioxidant stress. International Journal of Cardiology, 2015, 190, 282-283.	1.7	4
63	Unilateral low-level transcutaneous electrical vagus nerve stimulation: A novel noninvasive treatment for myocardial infarction. International Journal of Cardiology, 2015, 190, 9-10.	1.7	8
64	Noninvasive vagal nerve stimulation for heart failure: Was it practical or just a stunt?. International Journal of Cardiology, 2015, 187, 637-638.	1.7	9
65	The right side or left side of noninvasive transcutaneous vagus nerve stimulation: Based on conventional wisdom or scientific evidence?. International Journal of Cardiology, 2015, 187, 44-45.	1.7	38
66	Magnetic fields in noninvasive heart stimulation: A novel approach for anti-atrial fibrillation. International Journal of Cardiology, 2015, 190, 54-55.	1.7	1
67	Extracardiac autonomic modulations: Potential therapeutic options for myocardial ischemia-induced ventricular arrhythmia. International Journal of Cardiology, 2015, 188, 45-46.	1.7	1
68	Low-level vagus nerve stimulation: An important therapeutic option for atrial fibrillation treatment via modulating cardiac autonomic tone. International Journal of Cardiology, 2015, 199, 437-438.	1.7	15
69	MG53 protein: A promising novel therapeutic target for myocardial ischemia reperfusion injury. International Journal of Cardiology, 2015, 199, 424-425.	1.7	10
70	Renal sympathetic denervation: A potential therapeutic approach for long QT syndrome. International Journal of Cardiology, 2015, 197, 206-207.	1.7	2
71	A potential link between left stellate ganglion and renal sympathetic nerve: An important mechanism for cardiac arrhythmias?. International Journal of Cardiology, 2015, 179, 123-124.	1.7	4
72	Low level tragus nerve stimulation is a non-invasive approach for anti-atrial fibrillation via preventing the loss of connexins. International Journal of Cardiology, 2015, 179, 144-145.	1.7	27

#	Article	IF	CITATION
73	Anti-arrhythmic effects of atrial ganglionated plexi stimulation is accompanied by preservation of connexin43 protein in ischemia-reperfusion canine model. International Journal of Clinical and Experimental Medicine, 2015, 8, 22098-107.	1.3	4
74	Low-Level Carotid Baroreceptor Stimulation Suppresses Ventricular Arrhythmias during Acute Ischemia. PLoS ONE, 2014, 9, e109313.	2.5	22
75	Effect of Th17 and Treg Axis Disorder on Outcomes of Pulmonary Arterial Hypertension in Connective Tissue Diseases. Mediators of Inflammation, 2014, 2014, 1-11.	3.0	42
76	Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischaemiaâ€induced ventricular arrhythmia. Experimental Physiology, 2014, 99, 1467-1477.	2.0	48
77	Spinal Cord Stimulation Suppresses Focal Rapid Firing–induced Atrial Fibrillation by Inhibiting Atrial Ganglionated Plexus Activity. Journal of Cardiovascular Pharmacology, 2014, 64, 554-559.	1.9	14
78	Chronic Intermittent Low-Level Transcutaneous Electrical Stimulation of Auricular Branch of Vagus Nerve Improves Left Ventricular Remodeling in Conscious Dogs With Healed Myocardial Infarction. Circulation: Heart Failure, 2014, 7, 1014-1021.	3.9	105
79	Transcutaneous electrical stimulation of auricular branch of vagus nerve: A noninvasive therapeutic approach for post-ischemic heart failure. International Journal of Cardiology, 2014, 177, 676-677.	1.7	25
80	Abstract 11460: Chronic Intermittent Low Level Transcutaneous Electrical Stimulation of the Auricular Branch of the Vagus Nerve Improves Left Ventricular Remodeling in Conscious Dogs With Healed Myocardial Infarction. Circulation, 2014, 130, .	1.6	0
81	Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: A noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm, 2013, 10, 428-435.	0.7	135
82	Interactions between atrial electrical remodeling and autonomic remodeling: How to break the vicious cycle. Heart Rhythm, 2012, 9, 804-809.	0.7	100
83	Lowâ€Level Vagosympathetic Nerve Stimulation Inhibits Atrial Fibrillation Inducibility: Direct Evidence by Neural Recordings from Intrinsic Cardiac Ganglia. Journal of Cardiovascular Electrophysiology, 2011, 22, 455-463.	1.7	117
84	Autonomic Denervation With Magnetic Nanoparticles, Circulation, 2010, 122, 2653-2659.	1.6	45