Jing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2026073/publications.pdf

Version: 2024-02-01

279487 288905 1,678 49 23 40 citations h-index g-index papers 49 49 49 1479 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Research International, 2012, 46, 270-278.	2.9	151
2	Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50,702 Td (
3	Bulk, Foam, and Interfacial Properties of Tannic Acid/Sodium Caseinate Nanocomplexes. Journal of Agricultural and Food Chemistry, 2018, 66, 6832-6839.	2.4	87
4	Preparation and characterization of heterogeneous deacetylated konjac glucomannan. Food Hydrocolloids, 2014, 40, 9-15.	5.6	82
5	Ovalbumin-carboxymethylcellulose complex coacervates stabilized high internal phase emulsions: Comparison of the effects of pH and polysaccharide charge density. Food Hydrocolloids, 2020, 98, 105282.	5.6	82
6	Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association. Carbohydrate Polymers, 2011, 86, 865-871.	5.1	74
7	Engineering Multifunctional Films Based on Metal-Phenolic Networks for Rational pH-Responsive Delivery and Cell Imaging. ACS Biomaterials Science and Engineering, 2016, 2, 317-325.	2.6	68
8	Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and \hat{I}^2 -carrageenan blends. International Journal of Biological Macromolecules, 2019, 123, 1165-1171.	3.6	67
9	Supramolecular design of coordination bonding architecture on zein nanoparticles for pH-responsive anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1224-1233.	2.5	58
10	Encapsulation of tangeretin in PVA/PAA crosslinking electrospun fibers by emulsion-electrospinning: Morphology characterization, slow-release, and antioxidant activity assessment. Food Chemistry, 2021, 337, 127763.	4.2	51
11	Analysis of deacetylated konjac glucomannan and xanthan gum phase separation by film forming. Food Hydrocolloids, 2015, 48, 320-326.	5.6	48
12	The influence of amylose and amylopectin on water retention capacity and texture properties of frozen-thawed konjac glucomannan gel. Food Hydrocolloids, 2021, 113, 106521.	5 . 6	45
13	Degraded konjac glucomannan by \hat{i}^3 -ray irradiation assisted with ethanol: Preparation and characterization. Food Hydrocolloids, 2014, 36, 85-92.	5. 6	44
14	Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition. International Journal of Biological Macromolecules, 2014, 64, 402-408.	3.6	42
15	The influence of deacetylation degree of konjac glucomannan on rheological and gel properties of konjac glucomannan/ $\hat{\mathbb{P}}$ -carrageenan mixed system. Food Hydrocolloids, 2020, 101, 105523.	5. 6	40
16	Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution. International Journal of Biological Macromolecules, 2017, 94, 527-534.	3.6	38
17	Synergistic degradation of konjac glucomannan by alkaline and thermal method. Carbohydrate Polymers, 2014, 99, 270-277.	5.1	33
18	<i>In vitro</i> gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation. Food and Function, 2020, 11, 7596-7610.	2.1	31

#	Article	IF	CITATIONS
19	Multiple steps and critical behaviors of the binding of tannic acid to wheat starch: Effect of the concentration of wheat starch and the mass ratio of tannic acid to wheat starch. Food Hydrocolloids, 2019, 94, 174-182.	5.6	30
20	Konjac Glucomannan (KGM), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. Journal of Agricultural and Food Chemistry, 2021, 69, 12921-12932.	2.4	30
21	Enhancement of antioxidant and antibacterial properties for tannin acid/chitosan/tripolyphosphate nanoparticles filled electrospinning films: Surface modification of sliver nanoparticles. International Journal of Biological Macromolecules, 2017, 104, 813-820.	3.6	29
22	Confirmation and measurement of hydrophobic interaction in sol-gel system of konjac glucomannan with different degree of deacetylation. Carbohydrate Polymers, 2017, 174, 337-342.	5.1	27
23	An efficient and simple approach for the controlled preparation of partially degraded konjac glucomannan. Food Hydrocolloids, 2020, 108, 106017.	5.6	26
24	Preparation of konjac glucomannan/xanthan gum/sodium alginate composite gel by freezing combining moisture regulation. Food Hydrocolloids, 2022, 127, 107499.	5.6	25
25	Facile preparation of clay reinforced konjac glucomannan aerogels. RSC Advances, 2014, 4, 22251.	1.7	22
26	Comparative studies of konjac flours extracted from Amorphophallus guripingensis and Amorphophallus rivirei: Based on chemical analysis and rheology. Food Hydrocolloids, 2016, 57, 209-216.	5.6	22
27	Ultrasonic Degradation of Konjac Glucomannan and the Effect of Freezing Combined with Alkali Treatment on Their Rheological Profiles. Molecules, 2019, 24, 1860.	1.7	21
28	Preparation of thermo-reversible eugenol-loaded emulgel for refrigerated meat preservation. Food Hydrocolloids, 2018, 79, 235-242.	5.6	20
29	Carboxymethylpachymaran entrapped plant-based hollow microcapsules for delivery and stabilization of \hat{l}^2 -galactosidase. Food and Function, 2019, 10, 4782-4791.	2.1	19
30	Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocolloids, 2021, 120, 106855.	5.6	19
31	Folate-functionalized assembly of low density lipoprotein/sodium carboxymethyl cellulose nanoparticles for targeted delivery. Colloids and Surfaces B: Biointerfaces, 2017, 156, 19-28.	2.5	19
32	Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization. International Journal of Biological Macromolecules, 2017, 102, 218-224.	3.6	18
33	Silver nanoparticles on flower-like TiO2-coated polyacrylonitrile nanofibers: Catalytic and antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 380-386.	2.3	18
34	Microencapsulation of Eugenol Through Gelatin-Based Emulgel for Preservation of Refrigerated Meat. Food and Bioprocess Technology, 2020, 13, 1621-1632.	2.6	18
35	Development and characterization of edible plant-based fibers using a wet-spinning technique. Food Hydrocolloids, 2022, 133, 107965.	5.6	18
36	Carboxymethylpachymaran-zein coated plant microcapsules-based \hat{l}^2 -galactosidase encapsulation system for long-term effective delivery. Food Research International, 2020, 128, 108867.	2.9	16

#	Article	IF	CITATIONS
37	Konjac Oligosaccharides Modulate the Gut Environment and Promote Bone Health in Calcium-Deficient Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 4412-4422.	2.4	16
38	Designable Carboxymethylpachymaran/Metal Ion Architecture on Sunflower Sporopollenin Exine Capsules as Delivery Vehicles for Bioactive Macromolecules. Journal of Agricultural and Food Chemistry, 2020, 68, 13990-14000.	2.4	15
39	Tuning of Molecular Interactions between Zein and Tannic Acid to Modify Sunflower Sporopollenin Exine Capsules: Enhanced Stability and Targeted Delivery of Bioactive Macromolecules. ACS Applied Bio Materials, 2021, 4, 2686-2695.	2.3	15
40	In situ synthesis of gold nanoparticles on LBL coated nanofibers by tannic acid for catalytic application. RSC Advances, 2015, 5, 26965-26971.	1.7	13
41	Konjac oligosaccharides attenuate DSS-induced ulcerative colitis in mice: mechanistic insights. Food and Function, 2022, 13, 5626-5639.	2.1	13
42	An innovative konjac glucomannan/ <scp>ΰâ€carrageenan</scp> mixed tensile gel. Journal of the Science of Food and Agriculture, 2021, 101, 5067-5074.	1.7	11
43	Oligosaccharides act as the high efficiency stabilizer for \hat{l}^2 -galactosidase under heat treatment. International Journal of Biological Macromolecules, 2019, 137, 69-76.	3.6	10
44	Preparation and characterization of konjac glucomannan (<scp>KGM</scp>) and deacetylated <scp>KGM</scp> (<scp>Daâ€KGM</scp>) obtained by sonication. Journal of the Science of Food and Agriculture, 2022, 102, 4333-4344.	1.7	7
45	Synergistic interactions between konjac glucomannan and welan gum mixtures. LWT - Food Science and Technology, 2022, 162, 113425.	2.5	7
46	Correlations between sol viscosity of the partially degraded konjac glucomannan and appetite response of rats. Food Hydrocolloids for Health, 2021, 1, 100026.	1.6	5
47	A novel κ-carrageenan/konjac gum thermo-irreversible gel improved by gellan gum and Ca2+. LWT - Food Science and Technology, 2022, 154, 112645.	2.5	5
48	Development of multi-layered gastric floating tablets based on konjac glucomannan: a modified calcium supplement with enhanced bioavailability. Food and Function, 2019, 10, 6429-6437.	2.1	4
49	Sodium caseinate enhances the effect of konjac flour on delaying gastric emptying based on a dynamic <i>in vitro</i> human <scp>stomachâ€W</scp> (<scp>DIVHSâ€W</scp>) system. Journal of the Science of Food and Agriculture, 2022, , .	1.7	1