Rahul Anantharaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2025766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogen production with CO2 capture. International Journal of Hydrogen Energy, 2016, 41, 4969-4992.	3.8	343
2	Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation. Energies, 2019, 12, 559.	1.6	137
3	Comparison of Technologies for CO2 Capture from Cement Production—Part 2: Cost Analysis. Energies, 2019, 12, 542.	1.6	135
4	Low-temperature CO2 capture technologies – Applications and potential. International Journal of Refrigeration, 2013, 36, 1403-1416.	1.8	131
5	A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway. Journal of Cleaner Production, 2017, 144, 523-539.	4.6	94
6	Membrane properties required for post-combustion CO2 capture at coal-fired power plants. Journal of Membrane Science, 2016, 511, 250-264.	4.1	93
7	Design and off-design analyses of a pre-combustion CO2 capture process in a natural gas combined cycle power plant. International Journal of Greenhouse Gas Control, 2009, 3, 385-392.	2.3	86
8	Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Separation and Purification Technology, 2021, 256, 117832.	3.9	64
9	Post-combustion CO2 capture from a natural gas combined cycle by CaO/CaCO3 looping. International Journal of Greenhouse Gas Control, 2012, 11, 25-33.	2.3	59
10	Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources. Chemical Engineering Journal, 2017, 327, 618-628.	6.6	59
11	Techno-economic Analysis of MEA CO2 Capture from a Cement Kiln – Impact of Steam Supply Scenario. Energy Procedia, 2017, 114, 6229-6239.	1.8	58
12	Low-temperature CO2 Removal from Natural Gas. Energy Procedia, 2012, 26, 41-48.	1.8	57
13	Design-point and part-load considerations for natural gas combined cycle plants with post combustion capture. International Journal of Greenhouse Gas Control, 2012, 11, 271-282.	2.3	56
14	Application of Advanced Technologies for CO2 Capture From Industrial Sources. Energy Procedia, 2013, 37, 7176-7185.	1.8	53
15	Thermal efficiency of coal-fired power plants: From theoretical to practical assessments. Energy Conversion and Management, 2015, 105, 530-544.	4.4	52
16	Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis. Applied Energy, 2019, 233-234, 478-494.	5.1	52
17	CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resources, Conservation and Recycling, 2020, 162, 104973.	5.3	50
18	Energy Level Composite Curves—a new graphical methodology for the integration of energy intensive processes. Applied Thermal Engineering, 2006, 26, 1378-1384.	3.0	49

#	Article	IF	CITATIONS
19	Integration aspects of reactive absorption for post-combustion CO 2 capture from NGCC (natural gas) Tj ETQq1 1	0. <u>7</u> 8431 4.5	4 rgBT /Over
20	How much can novel solid sorbents reduce the cost of post-combustion <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e555" altimg="si168.svg"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">CO </mml:mi </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> capture? A techno-economic investigation on the cost limits of pressureâ€"vacuum swing adsorption.</mml:msub></mml:math 	ıb ^{5.1} /mml:	42 math>
21	Applied Energy, 2022, 306, 117955. Techno-economic assessment of flexible solvent regeneration & storage for base load coal-fired power generation with post combustion CO2 capture. Energy Procedia, 2011, 4, 2612-2619.	1.8	40
22	CO2 Capture in Natural Gas Production by Adsorption Processes. Energy Procedia, 2017, 114, 2259-2264.	1.8	40
23	NGCC post-combustion CO2 capture with Ca/carbonate looping: Efficiency dependency on sorbent properties, capture unit performance and process configuration. International Journal of Greenhouse Gas Control, 2014, 24, 43-53.	2.3	35
24	Techno-economic Performance of a Hybrid Membrane – Liquefaction Process for Post-combustion CO2 Capture. Energy Procedia, 2014, 61, 1244-1247.	1.8	32
25	A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO ₂ capture. Sustainable Energy and Fuels, 2018, 2, 1225-1243.	2.5	32
26	High-purity H2 production with CO2 capture based on coal gasification. Energy, 2015, 88, 9-17.	4.5	31
27	Performance and NOx Emissions of Refinery Fired Heaters Retrofitted to Hydrogen Combustion. Energy Procedia, 2013, 37, 7214-7220.	1.8	30
28	The sequential framework for heat exchanger network synthesis—The minimum number of units sub-problem. Computers and Chemical Engineering, 2010, 34, 1822-1830.	2.0	28
29	Multi-stage Membrane Processes for CO2 Capture from Cement Industry. Energy Procedia, 2014, 63, 6476-6483.	1.8	28
30	Optimal integration of compression heat with regenerative steam Rankine cycles in oxy-combustion coal based power plants. Energy, 2015, 84, 612-622.	4.5	23
31	Impact of Uncertainties on the Design and Cost of CCS From a Waste-to-Energy Plant. Frontiers in Energy Research, 2020, 8, .	1.2	22
32	Carbon capture and storage (CCS) options for co-production of electricity and synthetic fuels from indigenous coal in an Indian context. Energy for Sustainable Development, 2009, 13, 56-63.	2.0	20
33	CO2 Capture from Off-shore Gas Turbines Using Supersonic Gas Separation. Energy Procedia, 2014, 63, 243-252.	1.8	18
34	A Systematic Method for Membrane CO2 Capture Modeling and Analysis. Energy Procedia, 2014, 63, 217-224.	1.8	18
35	Low-temperature CCS from an IGCC Power Plant and Comparison with Physical Solvents. Energy Procedia, 2013, 37, 2204-2211.	1.8	17
36	Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2020, 14, 436-452.	2.3	17

#	Article	IF	CITATIONS
37	A Tool for Integrated Multi-criteria Assessment of the CCS Value Chain. Energy Procedia, 2014, 63, 7290-7297.	1.8	16
38	Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships. Separation and Purification Technology, 2022, 282, 120052.	3.9	16
39	Novel cycles for power generation with CO2 capture using OMCM technology. Energy Procedia, 2009, 1, 335-342.	1.8	15
40	Dual phase high-temperature membranes for CO ₂ separation – performance assessment in post- and pre-combustion processes. Faraday Discussions, 2016, 192, 251-269.	1.6	15
41	A qualitative reliability and operability analysis of an integrated reforming combined cycle plant with CO2 capture. International Journal of Greenhouse Gas Control, 2009, 3, 411-421.	2.3	14
42	Pursuing the pre-combustion CCS route in oil refineries – The impact on fired heaters. Applied Energy, 2013, 102, 833-839.	5.1	14
43	Evaluation of different CHP options for refinery integration in the context of a low carbon future. International Journal of Greenhouse Gas Control, 2009, 3, 152-160.	2.3	13
44	Multi-criteria analyses of two solvent and one low-temperature concepts for acid gas removal from natural gas. Journal of Natural Gas Science and Engineering, 2014, 20, 38-49.	2.1	12
45	Design of Steam Cycles for Oxy-combustion Coal based Power Plants with Emphasis on Heat Integration. Energy Procedia, 2014, 51, 119-126.	1.8	12
46	Membrane-assisted CO2 Liquefaction: Performance Modelling of CO2 Capture from Flue Gas in Cement Production. Energy Procedia, 2017, 114, 72-80.	1.8	12
47	Selection of Optimal CO2 Capture Plant Capacity for Better Investment Decisions. Energy Procedia, 2013, 37, 7039-7045.	1.8	10
48	Energy and Cost Evaluation of A Low-temperature CO2 Capture Unit for IGCC plants. Energy Procedia, 2014, 63, 2031-2036.	1.8	10
49	Optimal integration of compression heat with regenerative steam Rankine cycles. Computer Aided Chemical Engineering, 2014, 34, 519-524.	0.3	7
50	A Comparison of Post-combustion Capture Technologies for the NGCC. Energy Procedia, 2017, 114, 2631-2641.	1.8	7
51	Low Temperature Applications for CO2 Capture in Hydrogen Production. Computer Aided Chemical Engineering, 2020, , 445-450.	0.3	6
52	Techno-Economic Analyses of the CaO/CaCO3 Post-Combustion CO2 Capture From NGCC Power Plants. Frontiers in Chemical Engineering, 2021, 2, .	1.3	6
53	CCS – A technology for now: general discussion. Faraday Discussions, 2016, 192, 125-151.	1.6	5
54	Model reformulations for Work and Heat Exchange Network (WHEN) synthesis problems. Computers and Chemical Engineering, 2019, 125, 89-97.	2.0	5

RAHUL ANANTHARAMAN

#	Article	IF	CITATIONS
55	CO2 Capture Processes: Novel Approach to Benchmarking and Evaluation of Improvement Potentials. Energy Procedia, 2013, 37, 2536-2543.	1.8	4
56	CCS – A technology for the future: general discussion. Faraday Discussions, 2016, 192, 303-335.	1.6	4
57	CCS on Offshore Oil and Gas Installation - Design of Post-Combustion Capture System and Steam Cycle. Energy Procedia, 2017, 114, 6650-6659.	1.8	4
58	CO2 Capture from IGCC by Low-Temperature Synthesis Gas Separation. Energies, 2022, 15, 515.	1.6	4
59	Developments in the sequential framework for heat exchanger network synthesis of industrial size problems. Computer Aided Chemical Engineering, 2006, , 725-730.	0.3	3
60	Multi-Scale modelling of a membrane reforming power cycle with CO2 capture. Computer Aided Chemical Engineering, 2011, 29, 6-10.	0.3	3
61	GHGT-12 Performance of the IGCC with distributed feeding of H2 in the gas turbine burner. Energy Procedia, 2014, 63, 2037-2044.	1.8	3
62	Advanced methodology for screening of novel adsorption materials for cost-efficient CO2 capture. SSRN Electronic Journal, 0, , .	0.4	3
63	Design of an IRCC with CO2 capture utilizing a mixed integer optimization method. Computer Aided Chemical Engineering, 2012, 30, 51-55.	0.3	3
64	Revisiting the Simultaneous Process Optimization with Heat Integration Problem. Computer Aided Chemical Engineering, 2014, 34, 243-248.	0.3	2
65	Feeding a Gas Turbine with Aluminum Plant Exhaust for Increased CO2 Concentration in Capture Plant. Energy Procedia, 2014, 51, 411-420.	1.8	1
66	Negative Emissions in the Waste-to-Energy Sector: An Overview of the Newest-CCUS Programme. SSRN Electronic Journal, 0, , .	0.4	1
67	Constrained adaptive sampling for domain reduction in surrogate model generation: Applications to hydrogen production. AICHE Journal, 2021, 67, e17357.	1.8	1
68	A new paradigm in process synthesis focus on design of power plants and industrial processes integrated with CO2 capture. Computer Aided Chemical Engineering, 2016, 38, 1189-1194.	0.3	1
69	Modelling of the oxy-combustion fluid catalytic cracking units. Computer Aided Chemical Engineering, 2017, , 331-336.	0.3	1
70	Understanding the Cost of Retrofitting CO2 Capture to an Integrated Oil Refinery. SSRN Electronic Journal, 0, , .	0.4	1
71	Conceptual design of an efficient Hydrogen production process from Natural Gas using an extension to the "G-H―methodology. Computer Aided Chemical Engineering, 2018, , 379-384.	0.3	0
72	Process-informed Design of Tailor-made Sorbent Materials for Energy Efficient Carbon Capture (PrISMa). SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
73	Editorial: From CO2 Emissions to Fuels and Chemicals: Current Development, Challenges and Perspectives. Frontiers in Chemical Engineering, 2021, 3, .	1.3	0
74	Energy Integration of an IGCC Plant for Combined Hydrogen and Electricity Production—Methodology and Tools Integration. , 2009, , 327-334.		0
75	Feasibility of Selective Exhaust Gas Recycle Process for Membrane-based CO2 Capture from Natural Gas Combined Cycles – Showstoppers and Alternative Process Configurations. SSRN Electronic Journal, 0, , .	0.4	0