Shuquan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2025271/publications.pdf

Version: 2024-02-01

278 papers 28,544 citations

89 h-index 158 g-index

280 all docs

280 docs citations

times ranked

280

13711 citing authors

#	Article	IF	CITATIONS
1	Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2480-2501.	17.4	1,553
2	Issues and opportunities facing aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 3288-3304.	30.8	1,313
3	Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy and Environmental Science, 2020, 13, 503-510.	30.8	828
4	Li ⁺ intercalated V ₂ O ₅ Â- <i>n</i> H ₂ O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy and Environmental Science, 2018, 11, 3157-3162.	30.8	785
5	Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged Highâ€Energyâ€Density and Durable Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1808375.	14.9	568
6	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	30.8	497
7	Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zincâ€ion Batteries. Energy and Environmental Materials, 2020, 3, 146-159.	12.8	475
8	A Sieveâ€Functional and Uniformâ€Porous Kaolin Layer toward Stable Zinc Metal Anode. Advanced Functional Materials, 2020, 30, 2000599.	14.9	449
9	Surfaceâ€Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Advanced Materials, 2021, 33, e2100187.	21.0	432
10	Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy, 2018, 51, 579-587.	16.0	425
11	Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction. ACS Nano, 2019, 13, 5635-5645.	14.6	400
12	A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18209-18236.	10.3	387
13	Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	383
14	Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 1015-1033.	17.4	376
15	Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€lon Battery Anode. Advanced Energy Materials, 2018, 8, 1703155.	19.5	374
16	Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy, 2019, 61, 617-625.	16.0	340
17	Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 2020, 14, 16321-16347.	14.6	340
18	Investigation of V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ as a low-cost rechargeable aqueous zinc ion battery cathode. Chemical Communications, 2018, 54, 4457-4460.	4.1	330

#	Article	IF	Citations
19	Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 34, 545-562.	18.0	330
20	Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. Journal of Materials Chemistry, 2010, 20, 9193.	6.7	316
21	Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chemical Engineering Journal, 2020, 379, 122248.	12.7	308
22	Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. Journal of Materials Chemistry A, 2019, 7, 940-945.	10.3	291
23	Templateâ€Free Synthesis of VO ₂ Hollow Microspheres with Various Interiors and Their Conversion into V ₂ O ₅ for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 2226-2230.	13.8	275
24	V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode. Nano-Micro Letters, 2019, 11, 25.	27.0	274
25	Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Materials, 2018, 13, 168-174.	18.0	271
26	Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Materials, 2020, 24, 394-401.	18.0	270
27	Binder-free stainless steel@Mn ₃ O ₄ nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. Journal of Materials Chemistry A, 2018, 6, 9677-9683.	10.3	269
28	lon-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Materials, 2020, 27, 109-116.	18.0	262
29	Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy and Environmental Science, 2013, 6, 2691.	30.8	246
30	Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Materials Today Energy, 2020, 16, 100396.	4.7	245
31	Nitrogen-Doped Yolk–Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3624-3633.	8.0	244
32	Mechanistic Insights of Zn ²⁺ Storage in Sodium Vanadates. Advanced Energy Materials, 2018, 8, 1801819.	19.5	225
33	MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy, 2016, 26, 57-65.	16.0	224
34	pHâ€Buffer Contained Electrolyte for Selfâ€Adjusted Cathodeâ€Free Zn–MnO ₂ Batteries with Coexistence of Dual Mechanisms. Small Structures, 2021, 2, 2100119.	12.0	196
35	Interfacial <scp>adsorption–insertion</scp> mechanism induced by phase boundary toward better aqueous <scp>Znâ€ion</scp> battery. InformaÄnÃ-Materiály, 2021, 3, 1028-1036.	17.3	194
36	Cathode Interfacial Layer Formation <i>via ii> Situ</i> Electrochemically Charging in Aqueous Zinc-lon Battery. ACS Nano, 2019, 13, 13456-13464.	14.6	184

#	Article	IF	CITATIONS
37	Oxygen Defects in \hat{I}^2 -MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. IScience, 2020, 23, 100797.	4.1	184
38	Caging Na ₃ V ₂ (PO ₄) ₂ F ₃ Microcubes in Crossâ€Linked Graphene Enabling Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Science, 2018, 5, 1800680.	11.2	182
39	Interfacial Engineering Strategy for High-Performance Zn Metal Anodes. Nano-Micro Letters, 2022, 14, 6.	27.0	177
40	Integrated â€~all-in-one' strategy to stabilize zinc anodes for high-performance zinc-ion batteries. National Science Review, 2022, 9, nwab177.	9.5	174
41	Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochemistry Communications, 2010, 12, 1674-1677.	4.7	173
42	Encapsulation of CoS <i>_×</i> Nanocrystals into N/S Coâ€Doped Honeycombâ€Like 3D Porous Carbon for Highâ€Performance Lithium Storage. Advanced Science, 2018, 5, 1800829.	11.2	172
43	Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Science Bulletin, 2022, 67, 955-962.	9.0	172
44	Two-dimensional hybrid nanosheets of few layered MoSe ₂ on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 15302-15308.	10.3	167
45	Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Materials, 2019, 18, 10-14.	18.0	165
46	Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties. Nano Energy, 2015, 12, 709-724.	16.0	164
47	Synthesis of Hierarchical Three-Dimensional Vanadium Oxide Microstructures as High-Capacity Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Eamp; Interfaces, 2012, 4, 3874-3879.	8.0	157
48	Templateâ€Assisted Formation of Rattleâ€type V ₂ O ₅ Hollow Microspheres with Enhanced Lithium Storage Properties. Advanced Functional Materials, 2013, 23, 5669-5674.	14.9	154
49	Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy, 2019, 60, 312-323.	16.0	154
50	Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries. Nano-Micro Letters, 2021, 13, 69.	27.0	152
51	Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17737-17746.	6.7	151
52	Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. Journal of Materials Chemistry A, 2017, 5, 13983-13993.	10.3	150
53	Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling Highâ€Rate Longâ€Life Aqueous Zincâ€lon Battery. Advanced Functional Materials, 2019, 29, 1905267.	14.9	140
54	Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. EScience, 2022, 2, 209-218.	41.6	138

#	Article	IF	CITATIONS
55	Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy, 2015, 13, 58-66.	16.0	135
56	Nitrogen-doped TiO ₂ nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. Journal of Materials Chemistry A, 2016, 4, 18278-18283.	10.3	135
57	Liquid Alloy Interlayer for Aqueous Zinc-lon Battery. ACS Energy Letters, 2021, 6, 675-683.	17.4	135
58	Antiâ€Corrosive and Znâ€lonâ€Regulating Composite Interlayer Enabling Longâ€Life Zn Metal Anodes. Advanced Functional Materials, 2021, 31, 2104361.	14.9	135
59	Two-dimensional NiCo ₂ O ₄ nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale, 2015, 7, 7035-7039.	5.6	134
60	Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. Journal of Energy Chemistry, 2021, 55, 549-556.	12.9	132
61	Regulating Zinc Deposition Behaviors by the Conditioner of PAN Separator for Zincâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	130
62	Organic–Inorganic Hybrid Cathode with Dual Energyâ€Storage Mechanism for Ultrahighâ€Rate and Ultralongâ€Life Aqueous Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2105452.	21.0	129
63	Issues and Opportunities Facing Aqueous Mn ²⁺ /MnO ₂ â€based Batteries. ChemSusChem, 2022, 15, .	6.8	129
64	Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Materials, 2019, 21, 97-106.	18.0	128
65	Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Materials, 2022, 45, 618-646.	18.0	125
66	Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nano-Micro Letters, 2019, 11, 69.	27.0	122
67	Electrochemical Activation of Manganeseâ€Based Cathode in Aqueous Zincâ€lon Electrolyte. Advanced Functional Materials, 2020, 30, 2002711.	14.9	120
68	Chemical Synthesis of 3D Grapheneâ€Like Cages for Sodiumâ€Ion Batteries Applications. Advanced Energy Materials, 2017, 7, 1700797.	19.5	113
69	New Prelithiated V ₂ O ₅ Superstructure for Lithium-Ion Batteries with Long Cycle Life and High Power. ACS Energy Letters, 2020, 5, 31-38.	17.4	113
70	Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. Journal of Materials Chemistry, 2011, 21, 10077.	6.7	112
71	Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochimica Acta, 2015, 176, 1-9.	5.2	110
72	Increasing Accessible Subsurface to Improving Rate Capability and Cycling Stability of Sodiumâ€lon Batteries. Advanced Materials, 2021, 33, e2100808.	21.0	110

#	Article	IF	CITATIONS
73	An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 2019, 29, 1805978.	14.9	109
74	Stable Zinc Metal Anodes with Textured Crystal Faces and Functional Zinc Compound Coatings. Advanced Functional Materials, 2021, 31, 2106114.	14.9	109
75	Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Research, 2018, 11, 449-463.	10.4	108
76	Highly Reversible Phase Transition Endows V ₆ O ₁₃ with Enhanced Performance as Aqueous Zincâ€lon Battery Cathode. Energy Technology, 2019, 7, 1900022.	3.8	108
77	Mechanistic Insights of Mg ²⁺ â€Electrolyte Additive for Highâ€Energy and Longâ€Life Zincâ€Ion Hybrid Capacitors. Advanced Energy Materials, 2021, 11, 2101158.	19.5	108
78	Nb ₂ O ₅ quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. Journal of Materials Chemistry A, 2016, 4, 17838-17847.	10.3	107
79	Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Materials, 2017, 8, 28-34.	18.0	107
80	Progress and prospect of low-temperature zinc metal batteries., 2022, 1, 100011.		107
81	Template free synthesis of LiV ₃ O ₈ nanorods as a cathode material for high-rate secondary lithium batteries. Journal of Materials Chemistry, 2011, 21, 1153-1161.	6.7	105
82	Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. Journal of Power Sources, 2014, 272, 107-112.	7.8	101
83	Nitrogen doped hollow MoS 2 /C nanospheres as anode for long-life sodium-ion batteries. Chemical Engineering Journal, 2017, 327, 522-529.	12.7	101
84	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Materials, 2019, 18, 366-374.	18.0	101
85	High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication. Journal of Power Sources, 2011, 196, 3646-3649.	7.8	100
86	Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. Materials Science and Engineering C, 2017, 78, 12-17.	7.3	97
87	Stabilization of Zn Metal Anode through Surface Reconstruction of a Ceriumâ€Based Conversion Film. Advanced Functional Materials, 2021, 31, 2103227.	14.9	97
88	Enhanced Lithium-Ion Intercalation Properties of V ₂ O ₅ Xerogel Electrodes with Surface Defects. Journal of Physical Chemistry C, 2011, 115, 4959-4965.	3.1	96
89	Templateâ€Free Synthesis of Hierarchical Vanadiumâ€Glycolate Hollow Microspheres and Their Conversion to V ₂ O ₅ with Improved Lithium Storage Capability. Chemistry - A European Journal, 2013, 19, 494-500.	3.3	96
90	Oxygen-Incorporated MoS ₂ Nanosheets with Expanded Interlayers for Hydrogen Evolution Reaction and Pseudocapacitor Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33681-33689.	8.0	94

#	Article	IF	Citations
91	N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chemical Engineering Journal, 2018, 353, 606-614.	12.7	93
92	Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method. Applied Surface Science, 2012, 258, 5933-5937.	6.1	91
93	Rational design of multi-shelled CoO/Co ₉ S ₈ hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456.	10.3	91
94	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160.	10.3	90
95	A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€lon Batteries. Advanced Science, 2019, 6, 1900162.	11.2	90
96	Eutectic electrolyte based on <i>N</i> -methylacetamide for highly reversible zinc–iodine battery. Energy and Environmental Science, 2022, 15, 1192-1200.	30.8	89
97	N-doped one-dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion. Chemical Engineering Journal, 2018, 334, 2190-2200.	12.7	88
98	Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation. Advanced Energy Materials, 2019, 9, 1902319.	19.5	88
99	Hydrated Eutectic Electrolyte with Ligandâ€Oriented Solvation Shell to Boost the Stability of Zinc Battery. Advanced Functional Materials, 2022, 32, .	14.9	87
100	Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Materialia, 2019, 180, 51-59.	7.9	86
101	Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries. Chemical Engineering Journal, 2019, 374, 545-553.	12.7	86
102	Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Applied Catalysis B: Environmental, 2020, 273, 119072.	20.2	86
103	High-performance sodium-ion batteries and flexible sodium-ion capacitors based on $Sb < ub > 2 < sub > X < sub > 3 < sub > (X = O, S) $ carbon fiber cloth. Journal of Materials Chemistry A, 2017, 5, 9169-9176.	10.3	84
104	Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. Journal of Materials Chemistry A, 2019, 7, 7355-7359.	10.3	84
105	PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties. CrystEngComm, 2013, 15, 4998.	2.6	83
106	Uniform MnCo ₂ O ₄ Porous Dumbbells for Lithium-Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8730-8738.	8.0	83
107	Hydrogen Bondâ€Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Advanced Functional Materials, 2022, 32, .	14.9	82
108	Modulating oxygen coverage of Ti3C2Tx MXenes to boost catalytic activity for HCOOH dehydrogenation. Nature Communications, 2020, 11, 4251.	12.8	81

#	Article	IF	Citations
109	Uniform 8LiFePO 4 \hat{A} -Li 3 V 2 (PO 4) 3 /C nanoflakes for high-performance Li-ion batteries. Nano Energy, 2016, 22, 48-58.	16.0	80
110	Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Znâ€ion batteries. , 2020, 2, 294-301.		80
111	Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen-Doped Graphitized Carbon for Fast and Durable Potassium Storage. Nano-Micro Letters, 2021, 13, 21.	27.0	80
112	lon migration and defect effect of electrode materials in multivalent-ion batteries. Progress in Materials Science, 2022, 125, 100911.	32.8	79
113	Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochemistry Communications, 2017, 81, 10-13.	4.7	78
114	Facile synthesis of Nb2O5/carbon nanocomposites as advanced anode materials for lithium-ion batteries. Electrochimica Acta, 2018, 292, 63-71.	5.2	77
115	Structural Modification of V ₂ O ₅ as High-Performance Aqueous Zinc-lon Battery Cathode. Journal of the Electrochemical Society, 2019, 166, A480-A486.	2.9	75
116	<i>In situ</i> formation of Ni ₃ S ₂ â€"Cu _{1.8} S nanosheets to promote hybrid supercapacitor performance. Journal of Materials Chemistry A, 2019, 7, 11044-11052.	10.3	71
117	Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries. , 2020, 2, 853-860.		70
118	Binding MoSe ₂ with dual protection carbon for high-performance sodium storage. Journal of Materials Chemistry A, 2019, 7, 22871-22878.	10.3	69
119	High-performance anode based on porous Co3O4 nanodiscs. Journal of Power Sources, 2014, 255, 125-129.	7.8	67
120	TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors. Journal of Power Sources, 2017, 363, 284-290.	7.8	67
121	Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chemical Engineering Journal, 2018, 339, 162-169.	12.7	67
122	S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18286-18292.	10.3	67
123	Manipulating Ion Concentration to Boost Twoâ€Electron Mn ⁴⁺ /Mn ²⁺ Redox Kinetics through a Colloid Electrolyte for Highâ€Capacity Zinc Batteries. Advanced Energy Materials, 2022, 12, .	19.5	65
124	Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Science Bulletin, 2019, 64, 261-269.	9.0	63
125	Controllable synthesis of highly uniform cuboid-shape MOFs and their derivatives for lithium-ion battery and photocatalysis applications. Chemical Engineering Journal, 2017, 322, 281-292.	12.7	59
126	Carbon quantum dot modified Na ₃ 3as a high-performance cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18872-18879.	10.3	59

#	Article	IF	Citations
127	Hydrothermal synthesis of coherent porous V2O3/carbon nanocomposites for high-performance lithium- and sodium-ion batteries. Science China Materials, 2017, 60, 717-727.	6.3	58
128	Rare Cobalt-Based Phosphate Nanoribbons with Unique 5-Coordination for Electrocatalytic Water Oxidation. ACS Energy Letters, 2018, 3, 1254-1260.	17.4	57
129	Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chemical Engineering Journal, 2018, 335, 301-308.	12.7	57
130	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie - International Edition, 2020, 59, 7797-7802.	13.8	57
131	Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2019, 801, 82-89.	5.5	56
132	Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries. Journal of Power Sources, 2015, 275, 694-701.	7.8	55
133	Amino-functionalized mesoporous silica nanoparticles as efficient carriers for anticancer drug delivery. Journal of Biomaterials Applications, 2017, 32, 524-532.	2.4	55
134	Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Chemical Science, 2022, 13, 726-736.	7.4	54
135	Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability. Nano-Micro Letters, 2020, 12, 171.	27.0	53
136	Fe Single-Atom Catalyst for Visible-Light-Driven Photofixation of Nitrogen Sensitized by Triphenylphosphine and Sodium Iodide. ACS Catalysis, 2020, 10, 5502-5510.	11.2	51
137	Ni ₂ P ₂ O ₇ Nanoarrays with Decorated C ₃ N ₄ Nanosheets as Efficient Electrode for Supercapacitors. ACS Applied Energy Materials, 2018, 1, 2016-2023.	5.1	50
138	Interlayer Doping in Layered Vanadium Oxides for Lowâ€cost Energy Storage: Sodiumâ€ion Batteries and Aqueous Zincâ€ion Batteries. ChemNanoMat, 2020, 6, 1553-1566.	2.8	49
139	Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Research, 2020, 13, 3330-3337.	10.4	49
140	Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Science Bulletin, 2020, 65, 2014-2021.	9.0	47
141	Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, .	2.0	47
142	Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction. Nano-Micro Letters, 2022, 14, 93.	27.0	46
143	Ultrafine MoO2 nanoparticles grown on graphene sheets as anode materials for lithium-ion batteries. Materials Letters, 2014, 127, 32-35.	2.6	45
144	Synthesis of mesoporous \hat{l}^2 -Na0.33V2O5 with enhanced electrochemical performance for lithium ion batteries. Electrochimica Acta, 2014, 130, 119-126.	5.2	45

#	Article	IF	CITATIONS
145	Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. Journal of Physical Chemistry C, 2018, 122, 21462-21467.	3.1	45
146	Fabrication of <scp>M</scp> n– <scp>C</scp> o Spinel Coatings on <scp>C</scp> rofer 22 <scp>APU</scp> Stainless Steel by Electrophoretic Deposition for Interconnect Applications in Solid Oxide Fuel Cells. International Journal of Applied Ceramic Technology, 2014, 11, 332-341.	2.1	44
147	Nanorod-Nanoflake Interconnected LiMnPO ₄ 3/C Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27632-27641.	8.0	44
148	Three-Dimensional Carbon-Coated Treelike Ni ₃ S ₂ Superstructures on a Nickel Foam as Binder-Free Bifunctional Electrodes. ACS Applied Materials & Diterfaces, 2018, 10, 36018-36027.	8.0	44
149	Ultrathin Na _{1.1} V ₃ O _{7.9} Nanobelts with Superior Performance as Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8704-8709.	8.0	43
150	Controllable fabrication of urchin-like Co ₃ O ₄ hollow spheres for high-performance supercapacitors and lithium-ion batteries. Dalton Transactions, 2016, 45, 15155-15161.	3.3	43
151	Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Date (1998) and Samp; Interfaces, 2016, 8, 17303-17311.	8.0	43
152	Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon, 2017, 122, 82-91.	10.3	43
153	Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Materials Today Energy, 2021, 20, 100626.	4.7	42
154	Low Currentâ€Density Stable Zincâ€Metal Batteries Via Aqueous/Organic Hybrid Electrolyte. Batteries and Supercaps, 2022, 5, .	4.7	42
155	Quasiâ€Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for Highâ€Stability Zinc Metal Battery. Advanced Energy Materials, 2022, 12, .	19.5	42
156	Facile synthesis of Ag/AgVO3 hybrid nanorods with enhanced electrochemical performance as cathode material for lithium batteries. Journal of Power Sources, 2013, 228, 178-184.	7.8	41
157	Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries. Journal of Power Sources, 2014, 268, 700-705.	7.8	40
158	Carbon-encapsulated MoSe2/C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storageÂperformances. Electrochimica Acta, 2018, 292, 339-346.	5. 2	40
159	Highly reversible zinc-ion battery enabled by suppressing vanadium dissolution through inorganic Zn2+ conductor electrolyte. Nano Energy, 2021, 90, 106621.	16.0	40
160	Na0.282V2O5: A high-performance cathode material for rechargeable lithium batteries and sodium batteries. Journal of Power Sources, 2016, 328, 241-249.	7.8	37
161	One-dimensional coaxial Sb and carbon fibers with enhanced electrochemical performance for sodium-ion batteries. Applied Surface Science, 2018, 428, 448-454.	6.1	37
162	Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. Journal of Materials Chemistry A, 2020, 8, 18318-18326.	10.3	37

#	Article	IF	Citations
163	Porous CuFe for Plasmon-Assisted N ₂ Photofixation. ACS Energy Letters, 2020, 5, 2444-2451.	17.4	35
164	Morphological Evolution and Magnetic Property of Rareâ€Earthâ€Doped Hematite Nanoparticles: Promising Contrast Agents for T1â€Weighted Magnetic Resonance Imaging. Advanced Functional Materials, 2017, 27, 1606821.	14.9	34
165	Topical Application of Keratinocyte Growth Factor Conjugated Gold Nanoparticles Accelerate Wound Healing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1619-1628.	3.3	34
166	Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-lon Batteries. Frontiers in Chemistry, 2018, 6, 195.	3.6	34
167	Guest Pre-intercalation Strategy to Boost the Electrochemical Performance of Aqueous Zinc-ion Battery Cathodes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	34
168	Hydrothermal synthesis of Ag/ \hat{l}^2 -AgVO3 nanobelts with enhanced performance as a cathode material for lithium batteries. CrystEngComm, 2013, 15, 9869.	2.6	33
169	The general synthesis of Ag nanoparticles anchored on silver vanadium oxides: towards high performance cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11029-11034.	10.3	33
170	General synthesis of three-dimensional alkali metal vanadate aerogels with superior lithium storage properties. Journal of Materials Chemistry A, 2016, 4, 14408-14415.	10.3	33
171	Atomic-level insights into the activation of nitrogen via hydrogen-bond interaction toward nitrogen photofixation. CheM, 2021, 7, 2118-2136.	11.7	33
172	Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide–carbon cryogel nanocomposites. Journal of Power Sources, 2010, 195, 3893-3899.	7.8	32
173	Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries. Science China Materials, 2019, 62, 465-473.	6.3	31
174	Rational design of the pea-pod structure of SiO _x /C nanofibers as a high-performance anode for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 1762-1769.	6.0	31
175	Reduced graphene oxide modified V2O3 with enhanced performance for lithium-ion battery. Materials Letters, 2014, 137, 174-177.	2.6	30
176	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799.	10.3	30
177	Towards a durable high performance anode material for lithium storage: stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO ₂ . Journal of Materials Chemistry A, 2019, 7, 16541-16552.	10.3	30
178	Vanadiumâ€modified hard carbon spheres with sufficient pseudographitic domains as highâ€performance anode for sodiumâ€ion batteries. , 2023, 5, .		30
179	Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode. Journal of Energy Chemistry, 2019, 37, 172-175.	12.9	29
180	Self-Supported Fe-Doped CoP Nanowire Arrays Grown on Carbon Cloth with Enhanced Properties in Lithium-lon Batteries. ACS Applied Energy Materials, 2019, 2, 406-412.	5.1	29

#	Article	IF	CITATIONS
181	Three-dimensional Zn3V3O8/carbon fiber cloth composites as binder-free anode for lithium-ion batteries. Electrochimica Acta, 2017, 246, 97-105.	5.2	28
182	Trimetallic Hybrid Sulfides Embedded in Nitrogen-Doped Carbon Nanocubes as an Advanced Sodium-Ion Battery Anode. ACS Applied Energy Materials, 2019, 2, 4567-4575.	5.1	28
183	Î ² -FeOOH: a new anode for potassium-ion batteries. Chemical Communications, 2020, 56, 3713-3716.	4.1	28
184	Development and challenges of aqueous rechargeable zinc batteries. Chinese Science Bulletin, 2020, 65, 3562-3584.	0.7	28
185	Synergetic Effect of Alkaliâ€Site Substitution and Oxygen Vacancy Boosting Vanadate Cathode for Superâ€Stable Potassium and Zinc Storage. Advanced Functional Materials, 2022, 32, .	14.9	28
186	Construction of V2O5/NaV6O15 biphase composites as aqueous zinc-ion battery cathode. Journal of Electroanalytical Chemistry, 2019, 847, 113246.	3.8	27
187	Novel synthesis of V2O5 hollow microspheres for lithium ion batteries. Science China Materials, 2016, 59, 567-573.	6.3	26
188	Synthesis of mesoporous silica-calcium phosphate hybrid nanoparticles and their potential as efficient adsorbent for cadmium ions removal from aqueous solution. Journal of Colloid and Interface Science, 2018, 525, 126-135.	9.4	26
189	Nitrogen/sulfur co-doped hollow carbon nanofiber anode obtained from polypyrrole with enhanced electrochemical performance for Na-ion batteries. Science Bulletin, 2018, 63, 126-132.	9.0	26
190	Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11913-11917.	8.0	25
191	Template-assisted formation of porous vanadium oxide as high performance cathode materials for lithium ion batteries. Journal of Power Sources, 2015, 295, 254-258.	7.8	25
192	Multi-shelled \hat{l} ±-Fe2O3 microspheres for high-rate supercapacitors. Science China Materials, 2016, 59, 247-253.	6.3	25
193	Rational Design and Synthesis of Li ₃ V ₂ (PO ₄) ₃ /C Nanocomposites As High-Performance Cathodes for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7250-7256.	6.7	25
194	Sulfurâ€Doped Carbonâ€Wrapped Heterogeneous Fe ₃ O ₄ /Fe ₇ S ₈ /C Nanoplates as Stable Anode for Lithiumâ€ion Batteries. Batteries and Supercaps, 2020, 3, 344-353.	4.7	25
195	Melamine-assisted synthesis of ultrafine Mo2C/Mo2N@N-doped carbon nanofibers for enhanced alkaline hydrogen evolution reaction activity. Science China Materials, 2021, 64, 1150-1158.	6.3	25
196	Au atoms doped in Ti3C2Tx MXene: Benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation. Nano Research, 2022, 15, 2862-2869.	10.4	25
197	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small, 2018, 14, e1803015.	10.0	24
198	In Situ Defect Induction in Closeâ€Packed Lattice Plane for the Efficient Zinc Ion Storage. Small, 2021, 17, e2101944.	10.0	24

#	Article	IF	CITATIONS
199	Progress and prospect of the zinc–iodine battery. Current Opinion in Electrochemistry, 2021, 30, 100761.	4.8	24
200	Copper-Stabilized P′2-Type Layered Manganese Oxide Cathodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58665-58673.	8.0	24
201	Nb2O5microstructures: a high-performance anode for lithium ion batteries. Nanotechnology, 2016, 27, 46LT01.	2.6	23
202	<i>In situ</i> formation of porous graphitic carbon wrapped MnO/Ni microsphere networks as binder-free anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12316-12322.	10.3	23
203	Bimetallic phosphides embedded in hierarchical P-doped carbon for sodium ion battery and hydrogen evolution reaction applications. Science China Materials, 2019, 62, 1857-1867.	6.3	23
204	Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases. , 2019, 1, 254-259.		23
205	Perspectives in Electrochemical in situ Structural Reconstruction of Cathode Materials for Multivalentâ€ion Storage. Energy and Environmental Materials, 2023, 6, .	12.8	23
206	Facile synthesis of \hat{I}^2 -AgVO3 nanorods as cathode for primary lithium batteries. Materials Letters, 2012, 74, 176-179.	2.6	22
207	Hydrothermal synthesis of sodium vanadate nanobelts as high-performance cathode materials for lithium batteries. Journal of Power Sources, 2016, 325, 383-390.	7.8	22
208	Influence of probe-sonication process on drug entrapment efficiency of liposomes loaded with a hydrophobic drug. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 193-197.	3.4	22
209	Perspective on the synergistic effect of chalcogenide multiphases in sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 1694-1715.	5.9	22
210	Facile synthesis of multiwalled carbon nanotube–V2O5 nanocomposites as cathode materials for Li-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 2841-2846.	2.5	21
211	Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2016, 683, 178-185.	5.5	21
212	Cowpea-like N-Doped Silicon Oxycarbide/Carbon Nanofibers as Anodes for High-Performance Lithium-lon Batteries. ACS Applied Energy Materials, 2021, 4, 1677-1686.	5.1	21
213	Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries. Metals and Materials International, 2014, 20, 983-988.	3.4	20
214	Large-Scale Preparation, Chemical Exfoliation, and Structural Modification of Layered Zinc Hydroxide Nanocones: Transformation into Zinc Oxide Nanocones for Enhanced Photocatalytic Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 5869-5879.	6.7	20
215	Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries. Electrochimica Acta, 2018, 259, 419-426.	5 . 2	20
216	Pseudocapacitance-dominated zinc storage enabled by nitrogen-doped carbon stabilized amorphous vanadyl phosphate. Chemical Engineering Journal, 2021, 426, 131868.	12.7	20

#	Article	IF	CITATIONS
217	A Facile Carbon Quantum Dotâ€Modified Reduction Approach Towards Tunable Sb@CQDs Nanoparticles for High Performance Sodium Storage. Batteries and Supercaps, 2020, 3, 463-469.	4.7	20
218	Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries. Green Energy and Environment, 2023, 8, 1429-1436.	8.7	20
219	Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries. Scientific Reports, 2016, 6, 33682.	3.3	19
220	Highly regioselective complexation of tungsten with Eu@C ₈₂ /Eu@C ₈₄ : interplay between endohedral and exohedral metallic units induced by electron transfer. Chemical Science, 2019, 10, 4945-4950.	7.4	19
221	In situ formation of porous LiCuVO4/LiVO3/C nanotubes as a high-capacity anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 340-346.	6.0	19
222	Synthesis of Mesoporous Carbonâ€Bonded <scp>TiC/SiC</scp> Composites by Direct Carbothermal Reduction of Sol–Gel Derived Monolithic Precursor. Journal of the American Ceramic Society, 2011, 94, 4025-4031.	3.8	18
223	Facile synthesis of LiVO3 and its electrochemical behavior in rechargeable lithium batteries. Journal of Electroanalytical Chemistry, 2019, 853, 113505.	3.8	18
224	Controllable Ag Migration To Form One-Dimensional Ag/Ag ₂ S@ZnS for Bifunctional Catalysis. ACS Applied Energy Materials, 2020, 3, 6146-6154.	5.1	18
225	Layered Barium Vanadate Cathodes for Aqueous Zinc Batteries: Enhancing Cycling Stability through Inhibition of Vanadium Dissolution. ACS Applied Energy Materials, 2021, 4, 6197-6204.	5.1	18
226	Fundamental Understanding and Effect of Anionic Chemistry in Zinc Batteries. Energy and Environmental Materials, 2022, 5, 186-200.	12.8	18
227	Improving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries. Materials Today Energy, 2021, 22, 100851.	4.7	18
228	LiV3O8/Ag composite nanobelts with enhanced performance as cathode material for rechargeable lithium batteries. Journal of Alloys and Compounds, 2014, 583, 351-356.	5.5	17
229	Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries. Nanoscale Research Letters, 2016, 11, 549.	5.7	17
230	Effect of crystalline structure on the electrochemical properties of K0.25V2O5 nanobelt for fast Li insertion. Electrochimica Acta, 2016, 218, 199-207.	5.2	17
231	Electrochemical performance of AlV3O9 nanoflowers for lithium ion batteries application. Journal of Alloys and Compounds, 2017, 723, 92-99.	5.5	17
232	Enabling high-performance Na4MnV(PO4)3 cathode via synergetic strategy of carbon encapsulation and nanoengineering. Journal of Power Sources, 2022, 521, 230974.	7.8	17
233	Intelligent Nanoplatform with Multi Therapeutic Modalities for Synergistic Cancer Therapy. ACS Applied Materials & Description (2008) A	8.0	17
234	Template-free synthesis of \hat{l}^2 -Na _{0.33} V ₂ O ₅ microspheres as cathode materials for lithium-ion batteries. CrystEngComm, 2015, 17, 4774-4780.	2.6	16

#	Article	IF	CITATIONS
235	Inâ€situ Copper Doping with ZnO/ZnS Heterostructures to Promote Interfacial Photocatalysis of Microsized Particles. ChemCatChem, 2021, 13, 564-573.	3.7	16
236	Interfacial thermodynamics-inspired electrolyte strategy to regulate output voltage and energy density of battery chemistry. Science Bulletin, 2022, 67, 626-635.	9.0	16
237	Facilitating Phase Evolution for a High-Energy-Efficiency, Low-Cost O3-Type Na _{<i>x</i>} Cu _{0.18} Fe _{0.3} Mn _{0.52} O ₂ Sodium Ion Battery Cathode. Inorganic Chemistry, 2020, 59, 13792-13800.	4.0	15
238	Enveloping a Si/N-doped carbon composite in a CNT-reinforced fibrous network as flexible anodes for high performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 4386-4394.	6.0	15
239	Controlled fabrication and optical properties of uniform CeO2 hollow spheres. RSC Advances, 2013, 3, 3544.	3.6	14
240	Controllable Fabrication of Rare-Earth-Doped Gd ₂ Double-Shell Hollow Spheres for Efficient Upconversion Luminescence and Magnetic Resonance Imaging. ACS Sustainable Chemistry and Engineering, 2018, 6, 10463-10471.	6.7	14
241	In2O3 Nanocrystals for CO2 Fixation: Atomic-Level Insight into the Role of Grain Boundaries. IScience, 2019, 16, 390-398.	4.1	14
242	Vertically oriented Sn ₃ O ₄ nanoflakes directly grown on carbon fiber cloth for high-performance lithium storage. Inorganic Chemistry Frontiers, 2019, 6, 1468-1474.	6.0	14
243	Synthesis of K0.25V2O5 hierarchical microspheres as a high-rate and long-cycle cathode for lithium metal batteries. Journal of Alloys and Compounds, 2019, 772, 852-860.	5.5	14
244	Anchoring Active Sites by Pt ₂ FeNi Alloy Nanoparticles on NiFe Layered Double Hydroxides for Efficient Electrocatalytic Oxygen Evolution Reaction. Energy and Environmental Materials, 2022, 5, 270-277.	12.8	14
245	Facile synthesis of belt-like Ag1.2V3O8 with excellent stability for rechargeable lithium batteries. Journal of Power Sources, 2013, 233, 304-308.	7.8	13
246	Binder-Free Co ₄ N Nanoarray on Carbon Cloth as Flexible High-Performance Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 4432-4439.	5.1	13
247	Acetate-induced controlled-synthesis of hematite polyhedra enclosed by high-activity facets for enhanced photocatalytic performance. RSC Advances, 2016, 6, 66879-66883.	3.6	12
248	A one-pot synthesis of hetero-Co ₉ S ₈ â€"NiS sheets on graphene to boost lithiumâ€"sulfur battery performance. Inorganic Chemistry Frontiers, 2020, 7, 2160-2167.	6.0	12
249	Rational synthesis of SnS2@C hollow microspheres with superior stability for lithium-ion batteries. Science China Materials, 2017, 60, 955-962.	6.3	11
250	Fabrication of Si Nanoparticles@Carbon Fibers Composites from Natural Nanoclay as an Advanced Lithium-lon Battery Flexible Anode. Minerals (Basel, Switzerland), 2018, 8, 180.	2.0	11
251	Electrochemical Energy Storage Behavior of Na _{0.44} MnO ₂ in Aqueous Zinc-lon Battery. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	11
252	Facile synthesis of multiwalled carbon nanotube–LiV3O8 nanocomposites as cathode materials for Li-ion batteries. Materials Letters, 2013, 93, 435-438.	2.6	10

#	Article	IF	Citations
253	Autocatalytic oncotherapy nanosystem with glucose depletion for the cascade amplification of hypoxia-activated chemotherapy and H ₂ O ₂ -dependent chemodynamic therapy. Biomaterials Science, 2022, 10, 2358-2369.	5.4	10
254	Sodiumâ€ion Batteries: Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€ion Battery Anode (Adv. Energy Mater. 19/2018). Advanced Energy Materials, 2018, 8, 1870092.	19.5	9
255	Enriching surface oxygen vacancies of spinel Co ₃ O ₄ to boost H ₂ O adsorption for HER in alkaline media. Materials Advances, 2021, 2, 7054-7063.	5.4	9
256	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	4.6	9
257	pH-Responsive size-shrinkable mesoporous silica-based nanocarriers for improving tumor penetration and therapeutic efficacy. Nanoscale, 2022, 14, 1271-1284.	5.6	9
258	Template-free synthesis of highly porous V ₂ O ₅ cuboids with enhanced performance for lithium ion batteries. Nanotechnology, 2016, 27, 305404.	2.6	8
259	Cyclic enzymatic amplification method for highly sensitive detection of nuclear factor-kappa B. Analytica Chimica Acta, 2019, 1068, 80-86.	5.4	8
260	Porous structure ZnV2O4/C-N composite activating vanadium-based cathode in aqueous zinc-ion batteries. Materials Today Communications, 2021, 27, 102271.	1.9	8
261	Three-dimensional-network Fe ₃ O ₄ /Graphene/Carbon Nanotubes Composite with High Rate Cycling Capability as Anode Materials for Lithium-ion Batteries. Electrochemistry, 2017, 85, 397-402.	1.4	6
262	Photocatalysis: Operando Oxygen Vacancies for Enhanced Activity and Stability toward Nitrogen Photofixation (Adv. Energy Mater. 43/2019). Advanced Energy Materials, 2019, 9, 1970170.	19.5	6
263	Effect of pass deformation on microstructure, corrosion and electrochemical properties of aluminum alloy anodes for alkaline aluminum fuel cell applications. Metals and Materials International, 2013, 19, 555-561.	3.4	5
264	Green and Facile Preparation of Carbonâ€Coated TiO ₂ Nanosheets for Highâ€Performance Sodiumâ€Ion Batteries. Energy Technology, 2018, 6, 759-765.	3.8	5
265	Hierarchical 1D/2D V ₃ S ₄ @N, S-Codoped rGO Hybrids as High-Performance Anode Materials for Fast and Stable Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 4722-4732.	5.1	5
266	Facile synthesis of Cu3V2O7(OH)2 \hat{A} -2H2O as cathode for primary lithium batteries. Materials Letters, 2013, 99, 94-96.	2.6	4
267	Influence of PVP on Solvothermal Synthesized Fe ₃ O ₄ /Graphene Composites as Anodes for Lithium-ion Batteries. Electrochemistry, 2015, 83, 619-623.	1.4	4
268	Naâ€lon Batteries: A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€lon Batteries (Adv. Sci. 16/2019). Advanced Science, 2019, 6, 1970098.	11,2	4
269	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie, 2020, 132, 7871-7876.	2.0	4
270	Dendronized polyamides supports for Mo catalysts. Journal of Applied Polymer Science, 2013, 128, 642-646.	2.6	3

#	Article	IF	CITATIONS
271	Preparation of Defect-Related Luminescent Mesoporous Silica Nanoparticle as Potential Detectable Drug Carrier. Journal of Nanoscience and Nanotechnology, 2020, 20, 7362-7368.	0.9	3
272	Sulfurâ€Doped Carbonâ€Wrapped Heterogeneous Fe 3 O 4 /Fe 7 S 8 /C Nanoplates as Stable Anode for Lithiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 308-308.	4.7	3
273	Nitrogenâ€doped porous biomass carbon with ultrastable performance as anodes for potassiumâ€ion batteries. Nano Select, 2021, 2, 810-816.	3.7	3
274	Terbiumâ€Doped Layered Yttrium Hydroxide Nanocone: Controlled Synthesis, Structure Variations, Phase Conversion to Oxide/Oxysulfate Nanocone and Their Luminescence Properties. Particle and Particle Systems Characterization, 2018, 35, 1800075.	2.3	2
275	Modulation of Surface Oxygen Defects on ZnO/ZnS Catalysts to Promote Photocatalytic H ₂ Production. ChemistrySelect, 2022, 7, .	1.5	1
276	Multichannel Ca ²⁺ Generator for Synergistic Tumor Therapy via Intracellular Ca ²⁺ Overload and Chemotherapy. Langmuir, 0, , .	3.5	1
277	Sodium Citrate Induced Sol-gel Synthesis of Rhombohedral Structure Li ₂ NaV ₂ (PO ₄) ₃ /C Composite with High Capacity and Stability as Cathode for Lithium–ion Batteries. Electrochemistry, 2019, 87, 26-29.	1.4	0
278	Regulation of Active Oxygen Species by Grain Boundaries to Optimize Reaction Paths toward Aerobic Oxidations. Energy and Environmental Materials, 2021, 4, 444-450.	12.8	0