
Henny A J Van Lanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2024739/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catchment memory explains hydrological drought forecast performance. Scientific Reports, 2022, 12, 2689.	1.6	24
2	Streamflow droughts aggravated by human activities despite management. Environmental Research Letters, 2022, 17, 044059.	2.2	24
3	Streamflow drought: implication of drought definitions and its application for drought forecasting. Hydrology and Earth System Sciences, 2021, 25, 3991-4023.	1.9	22
4	Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environment International, 2020, 134, 105276.	4.8	148
5	Approaches to analyse and model changes in impacts: reply to discussions of "How to improve attribution of changes in drought and flood impacts― Hydrological Sciences Journal, 2020, 65, 491-494.	1.2	0
6	Potential of Pan-European Seasonal Hydrometeorological Drought Forecasts Obtained from a Multihazard Early Warning System. Bulletin of the American Meteorological Society, 2020, 101, E368-E393.	1.7	25
7	Skill of large-scale seasonal drought impact forecasts. Natural Hazards and Earth System Sciences, 2020, 20, 1595-1608.	1.5	13
8	Hydrological drought forecasts outperform meteorological drought forecasts. Environmental Research Letters, 2020, 15, 084010.	2.2	33
9	Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio, 2019, 48, 363-373.	2.8	28
10	Moving from drought hazard to impact forecasts. Nature Communications, 2019, 10, 4945.	5.8	67
11	Evaluating skill and robustness of seasonal meteorological and hydrological drought forecasts at the catchment scale – Case Catalonia (Spain). Environment International, 2019, 133, 105206.	4.8	15
12	How to improve attribution of changes in drought and flood impacts. Hydrological Sciences Journal, 2019, 64, 1-18.	1.2	56
13	Using paired catchments to quantify the human influence on hydrological droughts. Hydrology and Earth System Sciences, 2019, 23, 1725-1739.	1.9	81
14	Quantifying Positive and Negative Human-Modified Droughts in the Anthropocene: Illustration with Two Iranian Catchments. Water (Switzerland), 2019, 11, 884.	1.2	7
15	Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). Journal of Hydrology: Regional Studies, 2018, 16, 15-31.	1.0	37
16	Diagnosing drought using the downstreamness concept: the effect of reservoir networks on drought evolution. Hydrological Sciences Journal, 2018, 63, 979-990.	1.2	34
17	Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Climate Change, 2017, 7, 428-431.	8.1	96
18	Human–water interface in hydrological modelling: current status and future directions. Hydrology and Earth System Sciences, 2017, 21, 4169-4193.	1.9	171

HENNY A J VAN LANEN

#	Article	IF	CITATIONS
19	Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands. Hydrology and Earth System Sciences, 2017, 21, 2579-2594.	1.9	27
20	The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences, 2017, 21, 1397-1419.	1.9	224
21	The EuropeanÂ2015 drought from a hydrological perspective. Hydrology and Earth System Sciences, 2017, 21, 3001-3024.	1.9	132
22	Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences, 2016, 20, 3631-3650.	1.9	289
23	Impacts of European drought events: insights from an international database of text-based reports. Natural Hazards and Earth System Sciences, 2016, 16, 801-819.	1.5	187
24	Spatio-temporal Analysis of Hydrological Drought at Catchment Scale Using a Spatially-distributed Hydrological Model. Procedia Engineering, 2016, 154, 738-744.	1.2	14
25	Hydrology needed to manage droughts: the 2015 European case. Hydrological Processes, 2016, 30, 3097-3104.	1.1	152
26	Drought in the Anthropocene. Nature Geoscience, 2016, 9, 89-91.	5.4	537
27	Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts. Hydrology and Earth System Sciences, 2015, 19, 1993-2016.	1.9	62
28	Global hydrological droughts in the 21st century under a changing hydrological regime. Earth System Dynamics, 2015, 6, 1-15.	2.7	109
29	Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models. Natural Hazards and Earth System Sciences, 2015, 15, 487-504.	1.5	37
30	Modification of a fire drought index for tropical wetland ecosystems by including water table depth. Agricultural and Forest Meteorology, 2015, 203, 1-10.	1.9	41
31	The future for global water assessment. Journal of Hydrology, 2014, 518, 186-193.	2.3	39
32	How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4640-4656.	1.2	154
33	Making the distinction between water scarcity and drought using an observationâ€modeling framework. Water Resources Research, 2013, 49, 1483-1502.	1.7	210
34	Hydrological drought across the world: impact of climate and physical catchment structure. Hydrology and Earth System Sciences, 2013, 17, 1715-1732.	1.9	212
35	Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change. Science of the Total Environment, 2012, 440, 167-177.	3.9	45
36	A process-based typology of hydrological drought. Hydrology and Earth System Sciences, 2012, 16, 1915-1946.	1.9	291

HENNY A J VAN LANEN

#	Article	IF	CITATIONS
37	Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble. Hydrology and Earth System Sciences, 2012, 16, 2035-2047.	1.9	134
38	Influence of model structure on base flow estimation using Bilan, frier and HBV-light models / Vplyv Åįtruktúry modelu na stanovenie veľkosti podzemného odtoku využitÃm modelov bilan, frier a hbv-light. j. hydrol. hydromech., 60, 2012, 4; 29 lit., 7 obr., 1 tab Journal of Hydrology and Hydromechanics, 2012, 60, 242-251.	0.7	4
39	WATCH: Current Knowledge of the Terrestrial Global Water Cycle. Journal of Hydrometeorology, 2011, 12, 1149-1156.	0.7	87
40	Largeâ€scale river flow archives: importance, current status and future needs. Hydrological Processes, 2011, 25, 1191-1200.	1.1	274
41	Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrology and Earth System Sciences, 2010, 14, 2367-2382.	1.9	370
42	Space–time modelling of catchment scale drought characteristics. Journal of Hydrology, 2009, 375, 363-372.	2.3	171
43	Propagation and spatial distribution of drought in a groundwater catchment. Journal of Hydrology, 2006, 321, 257-275.	2.3	146
44	Future trends in transport and fate of diffuse contaminants in catchments, with special emphasis on stable isotope applications. Hydrological Processes, 2006, 20, 205-213.	1.1	20
45	HELPing FRIENDs in PUBs: charting a course for synergies within international water research programmes in gauged and ungauged basins. Hydrological Processes, 2006, 20, 1867-1874.	1.1	24
46	Propagation of drought through groundwater—a new approach using linear reservoir theory. Hydrological Processes, 2003, 17, 3023-3040.	1.1	124
47	Impact assessment of drought mitigation measures in two adjacent Dutch basins using simulation modelling. Journal of Hydrology, 2001, 252, 51-64.	2.3	18
48	Water flow and nitrate transport to a groundwater-fed stream in the Belgian-Dutch chalk region. Hydrological Processes, 1999, 13, 295-307.	1.1	14
49	The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil. Journal of Hydrology, 1987, 95, 1-11.	2.3	91
50	Hydrological Drought Characteristics Based on Groundwater and Runoff Across Europe. Proceedings of the International Association of Hydrological Sciences, 0, 383, 281-290.	1.0	8
51	The UNESCO FRIEND-Water program: accelerates, shares and transfers knowledge and innovation in hydrology across the world in the frame of the Intergovernmental Hydrological Program (IHP). Proceedings of the International Association of Hydrological Sciences, 0, 384, 5-18.	1.0	1
52	Preface: Hydrological processes and water security in a changing world. Proceedings of the International Association of Hydrological Sciences, 0, 383, 3-4.	1.0	3