Saisai Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2024729/publications.pdf

Version: 2024-02-01

30	1,040 citations	430442	476904
papers	citations	h-index	g-index
30	30	30	1420
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2013, 185, 602-607.	4.0	122
2	Morphology control and characterization of broom-like porous CeO2. Chemical Engineering Journal, 2015, 260, 126-132.	6.6	91
3	Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance. Applied Catalysis B: Environmental, 2019, 243, 513-521.	10.8	88
4	Synthesis high specific surface area nanotube g-C ₃ N ₄ with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Advances, 2015, 5, 4026-4029.	1.7	75
5	Synthesis and photocatalytic performance of yttrium-doped CeO2 with a porous broom-like hierarchical structure. Applied Catalysis B: Environmental, 2016, 183, 361-370.	10.8	57
6	Improving g-C 3 N 4 photocatalytic performance by hybridizing with Bi 2 O 2 CO 3 nanosheets. Catalysis Today, 2017, 284, 27-36.	2.2	54
7	Synthesis and photocatalytic performance of yttrium-doped CeO2 with a hollow sphere structure. Catalysis Today, 2017, 281, 135-143.	2.2	52
8	Design and Synthesis of Sm, Y, La and Ndâ€doped CeO ₂ with a broomâ€like hierarchical structure: a photocatalyst with enhanced oxidation performance. ChemCatChem, 2020, 12, 2638-2646.	1.8	51
9	Boosting visible-light-driven photocatalytic performance of waxberry-like CeO2 by samarium doping and silver QDs anchoring. Applied Catalysis B: Environmental, 2021, 286, 119845.	10.8	51
10	One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst. Applied Surface Science, 2015, 353, 949-957.	3.1	45
11	Porous cerium dioxide hollow spheres and their photocatalytic performance. RSC Advances, 2014, 4, 62255-62261.	1.7	39
12	Synthesis of novel yttrium-doped graphene oxide nanocomposite for dye removal. Journal of Materials Chemistry A, 2014, 2, 7897-7903.	5.2	39
13	Morphology control and photocatalytic characterization of yttrium-doped hedgehog-like CeO2. Applied Catalysis B: Environmental, 2015, 164, 120-127.	10.8	39
14	Development of the Visibleâ€Light Response of CeO _{2â^'<i>×</i>} with a high Ce ³⁺ Content and Its Photocatalytic Properties. ChemCatChem, 2018, 10, 1267-1271.	1.8	37
15	A new precursor to synthesize g-C ₃ N ₄ with superior visible light absorption for photocatalytic application. Catalysis Science and Technology, 2017, 7, 1826-1830.	2.1	35
16	A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal. Catalysis Today, 2018, 315, 184-193.	2,2	32
17	Fabrication and characterization of black TiO2 with different Ti3+ concentrations under atmospheric conditions. Journal of Catalysis, 2018, 366, 282-288.	3.1	31
18	Preparation of inverse opal titanium dioxide for photocatalytic performance research. Optical Materials, 2019, 96, 109287.	1.7	22

#	Article	IF	CITATIONS
19	Fabrication and characterization of inverse opal tin dioxide as a novel and high-performance photocatalyst for degradation of Rhodamine B dye. Inorganic and Nano-Metal Chemistry, 2021, 51, 150-158.	0.9	12
20	Tracking Confined Reaction Based on Host–Guest Interaction Using Singleâ€Molecule Conductance Measurement. Small, 2022, 18, e2104554.	5.2	11
21	Effects of the Atmosphere in a Hydrothermal Process on the Morphology and Photocatalytic Activity of Cerium Oxide. ChemCatChem, 2018, 10, 4269-4273.	1.8	9
22	The Characterization of Electronic Noise in the Charge Transport through Singleâ€Molecule Junctions. Small Methods, 2021, 5, e2001064.	4.6	9
23	Application of One-Dimensional Nanomaterials in Catalysis at the Single-Molecule and Single-Particle Scale. Frontiers in Chemistry, 2021, 9, 812287.	1.8	9
24	The Evolution of the Charge Transport Mechanism in Singleâ€Molecule Break Junctions Revealed by Flicker Noise Analysis. Small, 2022, 18, e2107220.	5.2	9
25	Electric field-induced switching among multiple conductance pathways in single-molecule junctions. Chemical Communications, 2021, 57, 7160-7163.	2.2	8
26	Single-atom control of electrical conductance and thermopower through single-cluster junctions. Nanoscale, 2021, 13, 12594-12601.	2.8	6
27	Fabrication and characterization of sesame ball-like CeO2:Y3+/P(St–AA) composite microspheres based on electrostatic interaction. Materials Letters, 2014, 121, 109-112.	1.3	3
28	Preparation and optical properties of tin dioxide inverse opal film. Rare Metals, 2015, , 1.	3.6	3
29	Fabrication and Characterization of Tin Oxide Inverse Opal by Template Method. Key Engineering Materials, 2013, 562-565, 18-21.	0.4	1
30	Fabrication and Characterization of Tin Oxide Inverse Opal by Template Method. , 0, , .		0