Lamjed Ben Said

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2024491/lamjed-ben-said-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

138	1,374	17	32
papers	citations	h-index	g-index
155	1,764 ext. citations	2.8	5.32
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
138	Malware Detection Using Rough Set Based Evolutionary Optimization. <i>Communications in Computer and Information Science</i> , 2021 , 634-641	0.3	
137	Code smell detection and identification in imbalanced environments. <i>Expert Systems With Applications</i> , 2021 , 166, 114076	7.8	3
136	Driving control based on bilevel optimization and fuzzy logic. <i>International Journal of Intelligent Systems</i> , 2021 , 36, 4495-4523	8.4	1
135	Deep convolutional neural network architecture design as a bi-level optimization problem. <i>Neurocomputing</i> , 2021 , 439, 44-62	5.4	14
134	Belief eXtended Classifier System: A New Approach for Dealing with Uncertainty in Sleep Stages Classification. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 454-463	0.4	
133	Software Anti-patterns Detection Under Uncertainty Using a Possibilistic Evolutionary Approach. <i>Lecture Notes in Computer Science</i> , 2021 , 181-197	0.9	0
132	An Approach to Intelligent Control Public Transportation System Using a Multi-agent System. <i>Lecture Notes in Business Information Processing</i> , 2021 , 242-267	0.6	
131	Evolutionary Optimization of Convolutional Neural Network Architecture Design for Thoracic X-Ray Image Classification. <i>Lecture Notes in Computer Science</i> , 2021 , 121-132	0.9	6
130	Neural networks for online learning of non-stationary data streams: a review and application for smart grids flexibility improvement. <i>Artificial Intelligence Review</i> , 2020 , 53, 6111-6154	9.7	4
129	Multi-Agent Cooperation for an Active Perception Based on Driving Behavior: Application in a Car-Following Behavior. <i>Applied Artificial Intelligence</i> , 2020 , 34, 710-729	2.3	1
128	Handling Sequence-dependent Setup Time Flexible Job Shop Problem with Learning and Deterioration Considerations using Evolutionary Bi-level Optimization. <i>Applied Artificial Intelligence</i> , 2020 , 34, 433-455	2.3	2
127	On the use of artificial malicious patterns for android malware detection. <i>Computers and Security</i> , 2020 , 92, 101743	4.9	17
126	Feature construction as a bi-level optimization problem. <i>Neural Computing and Applications</i> , 2020 , 32, 13783-13804	4.8	10
125	Class-Dependent Weighted Feature Selection as a Bi-Level Optimization Problem. <i>Communications in Computer and Information Science</i> , 2020 , 269-278	0.3	1
124	Unsupervised Sleep Stages Classification Based on Physiological Signals. <i>Lecture Notes in Computer Science</i> , 2020 , 134-145	0.9	1
123	An Improved Bi-level Multi-objective Evolutionary Algorithm for the Production-Distribution Planning System. <i>Lecture Notes in Computer Science</i> , 2020 , 218-229	0.9	2
122	Approximating Complex Pareto Fronts With Predefined Normal-Boundary Intersection Directions. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 809-823	15.6	6

(2019-2020)

121	A two-stage three-machine assembly scheduling problem with a truncation position-based learning effect. <i>Soft Computing</i> , 2020 , 24, 10515-10533	3.5	6
120	Bi-level multi-objective combinatorial optimization using reference approximation of the lower level reaction. <i>Procedia Computer Science</i> , 2020 , 176, 2098-2107	1.6	3
119	Solving Combinatorial Multi-Objective Bi-Level Optimization Problems Using Multiple Populations and Migration Schemes. <i>IEEE Access</i> , 2020 , 8, 141674-141695	3.5	10
118	A Fuzzy Logic Based Trust-ABAC Model for the Internet of Things. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 1157-1168	0.4	4
117	A New Fuzzy Logic Based Model for Location Trust Estimation in Electric Vehicular Networks. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 341-352	0.4	
116	A co-evolutionary hybrid decomposition-based algorithm for bi-level combinatorial optimization problems. <i>Soft Computing</i> , 2020 , 24, 7211-7229	3.5	1
115	A branch-and-bound algorithm and four metaheuristics for minimizing total completion time for a two-stage assembly flow-shop scheduling problem with learning consideration. <i>Engineering Optimization</i> , 2020 , 52, 1009-1036	2	11
114	A Hybrid Evolutionary Algorithm with Heuristic Mutation for Multi-objective Bi-clustering 2019,		1
113	Bi-level Decision-making Modeling for an Autonomous Driver Agent: Application in the Car-following Driving Behavior. <i>Applied Artificial Intelligence</i> , 2019 , 33, 1157-1178	2.3	5
112	Multi-objective evolution of oblique decision trees for imbalanced data binary classification. <i>Swarm and Evolutionary Computation</i> , 2019 , 49, 1-22	9.8	12
111	Studying Emotions at Work Using Agent-Based Modeling and Simulation. <i>IFIP Advances in Information and Communication Technology</i> , 2019 , 571-583	0.5	1
110	A two-stage three-machine assembly scheduling problem with deterioration effect. <i>International Journal of Production Research</i> , 2019 , 57, 6634-6647	7.8	11
109	A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection. <i>Memetic Computing</i> , 2019 , 11, 193-208	3.4	30
108	Weighted-Features Construction as a Bi-level Problem 2019 ,		3
107	Anticipation model based on a modified fuzzy logic approach. <i>IET Intelligent Transport Systems</i> , 2019 , 13, 330-339	2.4	O
106	An Investigation of a Bi-level Non-dominated Sorting Algorithm for Production-Distribution Planning System. <i>Lecture Notes in Computer Science</i> , 2019 , 819-826	0.9	3
105	Streaming Social Media Data Analysis for Events Extraction and Warehousing using Hadoop and Storm: Drug Abuse Case Study. <i>Procedia Computer Science</i> , 2019 , 159, 1459-1467	1.6	3
104	Hybrid System for Information Extraction from Social Media Text: Drug Abuse Case Study. <i>Procedia Computer Science</i> , 2019 , 159, 688-697	1.6	4

103	An immune network based distributed architecture to control public bus transportation systems. Swarm and Evolutionary Computation, 2019 , 50, 100478	9.8	2
102	A multi-level study of information trust models in WSN-assisted IoT. <i>Computer Networks</i> , 2019 , 151, 12	2-3 5 14	28
101	Transfer of learning with the co-evolutionary decomposition-based algorithm-II: a realization on the bi-level production-distribution planning system. <i>Applied Intelligence</i> , 2019 , 49, 963-982	4.9	1
100	An immune memory inspired case-based reasoning system to control interrupted flow at a signalized intersection. <i>Artificial Intelligence Review</i> , 2019 , 52, 2099-2129	9.7	9
99	A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization. <i>Applied Intelligence</i> , 2018 , 48, 2847-2872	4.9	14
98	An artificial immune network to control interrupted flow at a signalized intersection. <i>Information Sciences</i> , 2018 , 433-434, 70-95	7.7	18
97	Towards a self-adaptive access control middleware for the Internet of Things 2018,		7
96	A New Decomposition-Based NSGA-II for Many-Objective Optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2018 , 48, 1191-1210	7.3	120
95	On the importance of isolated infeasible solutions in the many-objective constrained NSGA-III. <i>Knowledge-Based Systems</i> , 2018 , 227, 104335	7.3	6
94	An immune multiagent system to monitor and control public bus transportation systems. <i>Computational Intelligence</i> , 2018 , 34, 1245-1276	2.5	1
93	Scheduling problems under learning effects: classification and cartography. <i>International Journal of Production Research</i> , 2018 , 56, 1642-1661	7.8	62
92	Social Stream Clustering to Improve Events Extraction. <i>Smart Innovation, Systems and Technologies</i> , 2018 , 319-329	0.5	
91	Multi-Agent BPMN Decision Footprint. Smart Innovation, Systems and Technologies, 2018, 234-244	0.5	
90	Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization. <i>Swarm and Evolutionary Computation</i> , 2018 , 39, 222-248	9.8	15
89	Discussion and Review of the Use of Neural Networks to Improve the Flexibility of Smart Grids in Presence of Distributed Renewable Ressources 2018 ,		2
88	A Multi-Objective Hybrid Filter-Wrapper Evolutionary Approach for Feature Construction on High-Dimensional Data 2018 ,		3
87	2018,		2
86	A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. <i>Soft Computing</i> , 2017 , 21, 885-906	3.5	46

85	Robust scheduling of truck arrivals at a cross-docking platform 2017 ,		2	
84	Emotional Dynamics and Coping Mechanisms to Generate Human-Like Agent Behaviors. <i>Applied Artificial Intelligence</i> , 2017 , 31, 472-492	2.3	2	
83	On-line self-adaptive framework for tailoring a neural-agent learning model addressing dynamic real-time scheduling problems. <i>Journal of Manufacturing Systems</i> , 2017 , 45, 97-108	9.1	11	
82	A self-adaptive hybrid algorithm for solving flexible job-shop problem with sequence dependent setup time. <i>Procedia Computer Science</i> , 2017 , 112, 457-466	1.6	8	
81	Multi-agent immune networks to control interrupted flow at signalized intersections. <i>Transportation Research Part C: Emerging Technologies</i> , 2017 , 82, 290-313	8.4	25	
80	On the importance of isolated solutions in constrained decomposition-based many-objective optimization 2017 ,		4	
79	Bi-MOCK: A Multi-objective Evolutionary Algorithm for Bi-clustering with Automatic Determination of the Number of Bi-clusters. <i>Lecture Notes in Computer Science</i> , 2017 , 366-376	0.9	3	
78	A Co-evolutionary Decomposition-based Chemical Reaction Algorithm for Bi-level Combinatorial Optimization Problems. <i>Procedia Computer Science</i> , 2017 , 112, 780-789	1.6	7	
77	A self-adaptive evolutionary algorithm for solving flexible job-shop problem with sequence dependent setup time and learning effects 2017 ,		3	
76	Many-objective Optimization Using Evolutionary Algorithms: A Survey. <i>Adaptation, Learning, and Optimization</i> , 2017 , 105-137	0.7	22	
75	Multi-objective Optimization: Classical and Evolutionary Approaches. <i>Adaptation, Learning, and Optimization</i> , 2017 , 1-30	0.7	8	
74	Dynamic Multi-objective Optimization Using Evolutionary Algorithms: A Survey. <i>Adaptation, Learning, and Optimization</i> , 2017 , 31-70	0.7	38	
73	Modelling and simulating a crisis management system: an organisational perspective. <i>Enterprise Information Systems</i> , 2017 , 11, 534-550	3.5	4	
72	A hybrid algorithm for flexible job-shop scheduling problem with setup times. <i>International Journal of Production Management and Engineering</i> , 2017 , 5, 23	0.4	13	
71	Multi-agent Based Truck Scheduling Using Ant Colony Intelligence in a Cross-Docking Platform. <i>Advances in Intelligent Systems and Computing</i> , 2017 , 457-466	0.4	2	
70	Integration of Immune Features into a Belief-Desire-Intention Model for Multi-agent Control of Public Transportation Systems. <i>Lecture Notes in Computer Science</i> , 2017 , 459-470	0.9	2	
69	MC-DMN: Meeting MCDM with DMN Involving Multi-criteria Decision-Making in Business Process. <i>Lecture Notes in Computer Science</i> , 2017 , 3-16	0.9	3	
68	Assessment of public transport control systems: a comparative analysis of platforms and a new platform architecture. <i>International Journal of Shipping and Transport Logistics</i> , 2016 , 8, 509	1	4	

67	An Immune Memory and Negative Selection Based Decision Support System to Monitor and Control Public Bus Transportation Systems. <i>IFAC-PapersOnLine</i> , 2016 , 49, 143-148	0.7	5
66	A Case-Based Reasoning System to Control Traffic at Signalized Intersections. <i>IFAC-PapersOnLine</i> , 2016 , 49, 149-154	0.7	14
65	New Algorithm for Frequent Itemsets Mining from Evidential Data Streams. <i>Procedia Computer Science</i> , 2016 , 96, 645-653	1.6	5
64	Fuzzy BDI agents for supply chain monitoring in an uncertain environment. <i>Supply Chain Forum</i> , 2016 , 17, 109-123	3.5	3
63	BPMN Decision Footprint: Towards Decision Harmony Along BI Process. <i>Communications in Computer and Information Science</i> , 2016 , 269-284	0.3	1
62	An Application Oriented Multi-Agent Based Approach to Dynamic Truck Scheduling at Cross-Dock 2016 ,		2
61	Solving many-objective problems using targeted search directions 2016,		3
60	Modeling and Simulation of Coping Mechanisms and Emotional Behavior During Emergency Situations. <i>Smart Innovation, Systems and Technologies</i> , 2016 , 163-176	0.5	1
59	An Immune Multi-agent Based Decision Support System for the Control of Public Transportation Systems. <i>Communications in Computer and Information Science</i> , 2016 , 187-198	0.3	2
58	Anticipation Based on a Bi-Level Bi-Objective Modeling for the Decision-Making in the Car-Following Behavior. <i>Smart Innovation, Systems and Technologies</i> , 2016 , 231-241	0.5	2
57	Personnalisation OLAP et SIG: Etude comparative et perspectives de personnalisation SOLAP. <i>Journal of Decision Systems</i> , 2016 , 25, 42-55	1.2	1
56	Flexible Job-shop Scheduling Problem with Sequence-dependent Setup Times using Genetic Algorithm 2016 ,		4
55	Enhancing Spatial Data Warehouse Exploitation: A SOLAP Recommendation Approach. <i>Studies in Computational Intelligence</i> , 2016 , 131-147	0.8	3
54	Multiagent Cooperation for Decision-Making in the Car-Following Behavior. <i>Lecture Notes in Computer Science</i> , 2016 , 391-401	0.9	4
53	A memetic evolutionary algorithm for bi-level combinatorial optimization: A realization between Bi-MDVRP and Bi-CVRP 2016 ,		3
52	Leveraging evolutionary algorithms for dynamic multi-objective optimization scheduling of multi-tenant smart home appliances 2016 ,		4
51	Decision-making harmonization in business process: Using NoSQL databases for decision rules modelling and serialization 2016 ,		1
50	A New Big Data Framework for Customer Opinions Polarity Extraction. <i>Communications in Computer and Information Science</i> , 2016 , 518-531	0.3	4

(2015-2016)

49	Lexicon-Based System for Drug Abuse Entity Extraction from Twitter. <i>Communications in Computer and Information Science</i> , 2016 , 692-703	0.3	2
48	A Hybrid Approach for Drug Abuse Events Extraction from Twitter. <i>Procedia Computer Science</i> , 2016 , 96, 1032-1040	1.6	9
47	Large Scale Microblogging Intentions Analysis with Pattern Based Approach. <i>Procedia Computer Science</i> , 2016 , 96, 1249-1257	1.6	6
46	Local Search for Maximizing Satisfiability in Qualitative Spatial and Temporal Constraint Networks. <i>Lecture Notes in Computer Science</i> , 2016 , 247-258	0.9	1
45	Multi-objective Optimization with Dynamic Constraints and Objectives 2015,		19
44	An Improved Co-evolutionary Decomposition-based Algorithm for Bi-level Combinatorial Optimization 2015 ,		8
43	EVIDIST: A Similarity Measure for Uncertain Data Streams. Lecture Notes in Computer Science, 2015, 11	3-15290	
42	An Ontology Based Benchmarking Platform for Public Transportation Control Systems. <i>IFAC-PapersOnLine</i> , 2015 , 48, 161-167	0.7	
41	A co-evolutionary decomposition-based algorithm for Bi-Level combinatorial optimization 2015,		16
40	A Recommendation Approach to Enhance the Interoperability between Spatial Datacubes. <i>Procedia Computer Science</i> , 2015 , 56, 558-565	1.6	
39	A spatial data warehouse recommendation approach: conceptual framework and experimental evaluation. <i>Human-centric Computing and Information Sciences</i> , 2015 , 5,	5.4	7
38	An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 2051-64	10.2	48
37	Preference Incorporation in Evolutionary Multiobjective Optimization. <i>Advances in Computers</i> , 2015 , 98, 141-207	2.9	54
36	Multi-agent optimization model for multi-criteria regulation of multi-modal public transport 2015,		4
35	An Improved MapReduce Design of Kmeans with Iteration Reducing for Clustering Stock Exchange Very Large Datasets 2015 ,		1
34	Lexico Semantic Patterns for Customer Intentions Analysis of Microblogging 2015,		4
33	Modelling and simulation of human behavioural and emotional dynamics during emergencies: a review of the state-of-the-art. <i>International Journal of Emergency Management</i> , 2015 , 11, 129	0.5	2
32	A Self Adaptive Neural Agent Based Decision Support System for Solving Dynamic Real Time Scheduling Problems 2015 ,		2

31	A Practical Approach for Maximizing Satisfiability in Qualitative Spatial and Temporal Constraint Networks 2015 ,		2
30	Computational Models of Immediate and Expected Emotions for Emotional BDI Agents. <i>Lecture Notes in Computer Science</i> , 2015 , 424-435	0.9	1
29	An Emotional Agent Model for the Simulation of Realistic Civilian Behaviors during Emergency Situations 2014 ,		2
28	A survey of simulation platforms for the assessment of public transport control systems 2014 ,		4
27	On the Use of Machine Learning and Search-Based Software Engineering for Ill-Defined Fitness Function: A Case Study on Software Refactoring. <i>Lecture Notes in Computer Science</i> , 2014 , 31-45	0.9	14
26	Steady state IBEA assisted by MLP neural networks for expensive multi-objective optimization problems 2014 ,		20
25	A Multiple Reference Point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes 2014 ,		13
24	A New Fuzzy-Based Approach for Anonymity Quantification in E-Services. <i>International Journal of Information Security and Privacy</i> , 2014 , 8, 13-38	0.9	
23	Transshipment problem with fuzzy customer demands and fuzzy inventory costs. <i>International Journal of Management and Decision Making</i> , 2014 , 13, 99	0.4	1
22	An indicator-based chemical reaction optimization algorithm for multi-objective search 2014,		3
21	A Computational Model of Emotions for the Simulation of Human Emotional Dynamics in Emergency Situations. <i>International Journal of Computer Theory and Engineering</i> , 2014 , 6, 227-233	0.1	9
20	Agent Decision-Making under Uncertainty: Towards a New E-BDI Agent Architecture Based on Immediate and Expected Emotions. <i>International Journal of Computer Theory and Engineering</i> , 2014 , 6, 254-259	0.1	4
19	Preference-Based Many-Objective Evolutionary Testing Generates Harder Test Cases for Autonomous Agents. <i>Lecture Notes in Computer Science</i> , 2013 , 245-250	0.9	22
18	Multiobjective Analysis of the Multi-Location Newsvendor and Transshipment Models. <i>International Journal of Information Systems and Supply Chain Management</i> , 2013 , 6, 42-60	0.6	4
17	Articulating Decision Maker\\Preference Information within Multiobjective Artificial Immune Systems 2012,		1
16	Searching for knee regions of the Pareto front using mobile reference points. <i>Soft Computing</i> , 2011 , 15, 1807-1823	3.5	56
15	Greedy Local Improvement of SPEA2 Algorithm to Solve the Multiobjective Capacitated Transshipment Problem. <i>Lecture Notes in Computer Science</i> , 2011 , 364-378	0.9	
14	Negotiating decision makersWeference points for group preference-based Evolutionary Multi-objective Optimization 2011 ,		14

LIST OF PUBLICATIONS

13	A two-step transshipment model with fuzzy demands and service level constraints. <i>International Journal of Simulation Modelling</i> , 2010 , 9, 40-52	2.5	2
12	A Study of Stock Market Trading Behavior and Social Interactions through a Multi Agent Based Simulation. <i>Lecture Notes in Computer Science</i> , 2010 , 302-311	0.9	2
11	Searching for knee regions in multi-objective optimization using mobile reference points 2010,		23
10	Estimating nadir point in multi-objective optimization using mobile reference points 2010,		15
9	The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making. <i>IEEE Transactions on Evolutionary Computation</i> , 2010 , 14, 801-818	15.6	201
8	Multi-agent Based Simulation of Animal Food Selective Behavior in a Pastoral System. <i>Lecture Notes in Computer Science</i> , 2010 , 283-292	0.9	2
7	Stylized Facts Study through a Multi-Agent Based Simulation of an Artificial Stock Market. <i>Lecture Notes in Economics and Mathematical Systems</i> , 2010 , 27-38	0.4	1
6	PHC-NSGA-II: A Novel Multi-objective Memetic Algorithm for Continuous Optimization 2008,		9
5	Evolutionary multiobjective optimization of the multi-location transshipment problem. <i>Operational Research</i> , 2008 , 8, 167-183	1.6	16
4	An elitist cooperative evolutionary bi-level multi-objective decomposition-based algorithm for sustainable supply chain. <i>International Journal of Production Research</i> ,1-20	7.8	O
3	An efficient chemical reaction algorithm for multi-objective combinatorial bi-level optimization. <i>Engineering Optimization</i> ,1-22	2	4
2	Solving combinatorial bi-level optimization problems using multiple populations and migration schemes. <i>Operational Research</i> ,1	1.6	2
1	Joint design and compression of convolutional neural networks as a Bi-level optimization problem. Neural Computing and Applications,	4.8	3