Chuhong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2024283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Hierarchically Ordered Array of Silverâ€Nanorod Bundles for Surfaceâ€Enhanced Raman Scattering Detection of Phenolic Pollutants. Advanced Materials, 2016, 28, 4871-4876.	21.0	333
2	Arrays of Coneâ€6haped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surfaceâ€Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Advanced Functional Materials, 2012, 22, 218-224.	14.9	312
3	Improved SERS Performance from Au Nanopillar Arrays by Abridging the Pillar Tip Spacing by Ag Sputtering. Advanced Materials, 2010, 22, 4136-4139.	21.0	217
4	Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. Journal of the Electrochemical Society, 2018, 165, B3098-B3118.	2.9	147
5	Green Synthesis of Large-Scale Highly Ordered Core@Shell Nanoporous Au@Ag Nanorod Arrays as Sensitive and Reproducible 3D SERS Substrates. ACS Applied Materials & Interfaces, 2014, 6, 15667-15675.	8.0	120
6	Largeâ€erea Ag nanorod array substrates for SERS: AAO templateâ€essisted fabrication, functionalization, and application in detection PCBs. Journal of Raman Spectroscopy, 2013, 44, 240-246.	2.5	119
7	Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chemical Communications, 2011, 47, 2709-2711.	4.1	101
8	Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 2014, 6, 4781.	5.6	92
9	Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes. ACS Applied Materials & Interfaces, 2017, 9, 39618-39625.	8.0	80
10	Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77. Journal of Hazardous Materials, 2012, 211-212, 389-395.	12.4	73
11	ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Research, 2015, 8, 957-966.	10.4	62
12	Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-Î ² -CD as effective SERS substrates for trace detection of PCBs. Journal of Materials Chemistry, 2012, 22, 2271-2278.	6.7	59
13	Gap-tunable Ag-nanorod arrays on alumina nanotip arrays as effective SERS substrates. Journal of Materials Chemistry C, 2013, 1, 5015.	5.5	53
14	Surface-Enhanced Raman Spectroscopy for Trace Detection of Tetracycline and Dicyandiamide in Milk Using Transparent Substrate of Ag Nanoparticle Arrays. ACS Applied Nano Materials, 2020, 3, 7066-7075.	5.0	52
15	A Generic Synthetic Approach to Large‣cale Pristine raphene/Metalâ€Nanoparticles Hybrids. Advanced Functional Materials, 2013, 23, 5771-5777.	14.9	42
16	Palladium–Cobalt Nanowires Decorated with Jagged Appearance for Efficient Methanol Electro-oxidation. ACS Applied Materials & Interfaces, 2018, 10, 29965-29971.	8.0	40
17	Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates. Physical Chemistry Chemical Physics, 2014, 16, 3686.	2.8	39
18	Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs. Nanotechnology, 2014, 25, 145605.	2.6	36

Сниномс Zhu

#	Article	IF	CITATIONS
19	Silver nanocubes/graphene oxide hybrid film on a hydrophobic surface for effective molecule concentration and sensitive SERS detection. Applied Surface Science, 2019, 470, 423-429.	6.1	36
20	A silver-grafted sponge as an effective surface-enhanced Raman scattering substrate. Sensors and Actuators B: Chemical, 2018, 258, 56-63.	7.8	34
21	Galvanicâ€Cellâ€Induced Growth of Ag Nanosheetâ€Assembled Structures as Sensitive and Reproducible SERS Substrates. Chemistry - A European Journal, 2012, 18, 14948-14953.	3.3	33
22	Hexagonally arranged arrays of urchin-like Ag hemispheres decorated with Ag nanoparticles for surface-enhanced Raman scattering substrates. Nano Research, 2015, 8, 2261-2270.	10.4	33
23	Highly sensitive surface-enhanced Raman scattering detection of organic pesticides based on Ag-nanoplate decorated graphene-sheets. Applied Surface Science, 2019, 486, 405-410.	6.1	33
24	Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117783.	3.9	33
25	Au Hierarchical Micro/Nanotower Arrays and Their Improved SERS Effect by Ag Nanoparticle Decoration. Crystal Growth and Design, 2011, 11, 748-752.	3.0	32
26	Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs. Chemical Communications, 2014, 50, 569-571.	4.1	30
27	Nano-petri-dish Array Assisted Glancing Angle Sputtering for Ag-NP Assembled Bi-nanoring Arrays as Effective SERS Substrates. ACS Applied Materials & Interfaces, 2014, 6, 7991-7995.	8.0	23
28	Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. Nanotechnology, 2020, 31, 205303.	2.6	23
29	An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide. Nanotechnology, 2016, 27, 384001.	2.6	21
30	A Hierarchical Nanostructureâ€Based Surfaceâ€Enhanced Raman Scattering Sensor for Preconcentration and Detection of Antibiotic Pollutants. Advanced Materials Technologies, 2017, 2, 1700028.	5.8	20
31	A Surface-Enhanced Raman Scattering Sensor Integrated with Battery-Controlled Fluidic Device for Capture and Detection of Trace Small Molecules. Scientific Reports, 2015, 5, 12865.	3.3	19
32	Template-assisted fabrication of Ag-nanoparticles@ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides. Nanotechnology, 2021, 32, 145302.	2.6	19
33	A split-type structure of Ag nanoparticles and Al ₂ O ₃ @Ag@Si nanocone arrays: an ingenious strategy for SERS-based detection. Nanoscale, 2020, 12, 4359-4365.	5.6	18
34	Ostwaldâ€Ripeningâ€Induced Growth of Parallel Faceâ€Exposed Ag Nanoplates on Microâ€Hemispheres for High SERS Activity. Chemistry - A European Journal, 2013, 19, 9211-9217.	3.3	15
35	Urchin-like Au-nanoparticles@Ag-nanohemisphere arrays as active SERS-substrates for recognition of PCBs. RSC Advances, 2014, 4, 19654-19657.	3.6	15
36	Ag-nanocubes/graphene-oxide/Au-nanoparticles composite film with highly dense plasmonic hotspots for surface-enhanced Raman scattering detection of pesticide. Microchemical Journal, 2021, 165, 106090.	4.5	15

Сниномс Zhu

#	Article	IF	CITATIONS
37	Size-tunable nano-dots and nano-rings from nanochannel-confined electrodeposition. Chemical Communications, 2009, , 7110.	4.1	14
38	FITC-modified PPy nanotubes embedded in nanoporous AAO membrane can detect trace PCB20 via fluorescence ratiometric measurement. Chemical Communications, 2011, 47, 3808.	4.1	14
39	Ordered arrays of vertically aligned Au-nanotubes grafted with flocky Au/Ag-nanospikes based on electrodeposition and subsequent redox reaction. Electrochemistry Communications, 2015, 60, 104-108.	4.7	13
40	Three-dimensional surface-enhanced Raman scattering substrates constructed by integrating template-assisted electrodeposition and post-growth of silver nanoparticles. Journal of Colloid and Interface Science, 2022, 608, 2111-2119.	9.4	13
41	Surface-Enhanced Raman Scattering from Au-Nanorod Arrays with Sub-5-nm Gaps Stuck Out of an AAO Template. Journal of Nanoscience and Nanotechnology, 2016, 16, 934-938.	0.9	11
42	Ag-coated 3D Cu(OH)2 nanowires on the woven copper mesh as a cost-effective surface-enhanced Raman scattering substrate. Surface and Coatings Technology, 2021, 415, 127132.	4.8	11
43	Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu ₂ O film with predominant (111) orientation. Chemical Communications, 2022, 58, 3613-3616.	4.1	11
44	R6G/8-AQ co-functionalized Fe3O4@SiO2 nanoparticles for fluorescence detection of trace Hg2+ and Zn2+ in aqueous solution. Science China Materials, 2015, 58, 550-558.	6.3	9
45	In situ synthesis of pristine-graphene/Ag nanocomposites as highly sensitive SERS substrates. RSC Advances, 2016, 6, 91579-91583.	3.6	9
46	Surface plasmons activate the oxygen evolution reaction over nickel hydroxide electrocatalysts. International Journal of Hydrogen Energy, 2021, 46, 21433-21441.	7.1	9
47	Synthesis and Thermal Expansion of Copper Nanotubes and Nanowires with Y―and Stepâ€Shaped Topologies. Small, 2010, 6, 381-385.	10.0	8
48	Silver-Nanorod Bundles: A Hierarchically Ordered Array of Silver-Nanorod Bundles for Surface-Enhanced Raman Scattering Detection of Phenolic Pollutants (Adv. Mater. 24/2016). Advanced Materials, 2016, 28, 4870-4870.	21.0	8
49	Understanding the photothermal contribution to electrocatalysis: A case study of carbon supported NiFe layered double hydroxide. International Journal of Hydrogen Energy, 2022, 47, 23971-23979.	7.1	8
50	Fabrication of hexagonally patterned flower-like silver particle arrays as surface-enhanced Raman scattering substrates. Nanotechnology, 2016, 27, 325303.	2.6	7
51	Ordered arrays of Ag nanodendrite clusters as effective surface-enhanced Raman scattering substrates. RSC Advances, 2016, 6, 26490-26494.	3.6	7
52	Agâ€Nanoparticlesâ€Decorated Geâ€Nanowhisker Grafted on Carbon Fiber Cloth as Flexible and Effective SERS Substrates. ChemistrySelect, 2020, 5, 8338-8343.	1.5	7
53	Electrodeposition of rough gold nanoarrays for surface-enhanced Raman scattering detection. Materials Chemistry and Physics, 2021, 263, 124388.	4.0	7
54	Carbon Defects Induced Delocalization of π Electrons Enables Efficient Charge Separation in Graphitic Carbon Nitride for Increased Photocatalytic H2 Generation. Catalysis Letters, 2022, 152, 669-678.	2.6	6

#	Article	IF	CITATIONS
55	A composite consisting of intermetallic Ni3Fe and nitrogen-doped carbon for electrocatalytic water oxidation: The effect of increased pyridinic nitrogen dopant. Ceramics International, 2022, 48, 5759-5765.	4.8	4
56	CdS-Based Photocatalysts for Solar Water Splitting. Journal of Photocatalysis, 2021, 02, .	0.4	1