Ian D Jonsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/202411/publications.pdf

Version: 2024-02-01

75	6,331	34	76
papers	citations	h-index	g-index
80	80	80	6120 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Tracking apex marine predator movements in a dynamic ocean. Nature, 2011, 475, 86-90.	13.7	1,038
2	ROBUST STATE–SPACE MODELING OF ANIMAL MOVEMENT DATA. Ecology, 2005, 86, 2874-2880.	1.5	656
3	Key Questions in Marine Megafauna Movement Ecology. Trends in Ecology and Evolution, 2016, 31, 463-475.	4.2	397
4	Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate Change, 2013, 3, 234-238.	8.1	390
5	Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model. Marine Ecology - Progress Series, 2007, 337, 255-264.	0.9	267
6	META-ANALYSIS OF ANIMAL MOVEMENT USING STATE-SPACE MODELS. Ecology, 2003, 84, 3055-3063.	1.5	223
7	Sexâ€specific, seasonal foraging tactics of adult grey seals (Halichoerus grypus) revealed by state–space analysis. Ecology, 2009, 90, 3209-3221.	1.5	185
8	Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecology, 1997, 12, 185-197.	1.9	179
9	Tracking of marine predators to protect Southern Ocean ecosystems. Nature, 2020, 580, 87-92.	13.7	156
10	Movement responses to environment: fast inference of variation among southern elephant seals with a mixed effects model. Ecology, 2019, 100, e02566.	1.5	144
11	Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. Journal of Animal Ecology, 2006, 75, 1046-1057.	1.3	140
12	Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Scientific Reports, 2016, 6, 20625.	1.6	137
13	North Atlantic Blue and Fin Whales Suspend Their Spring Migration to Forage in Middle Latitudes: Building up Energy Reserves for the Journey?. PLoS ONE, 2013, 8, e76507.	1.1	127
14	Animal-Borne Telemetry: An Integral Component of the Ocean Observing Toolkit. Frontiers in Marine Science, 2019, 6, .	1.2	127
15	State-space models' dirty little secrets: even simple linear Gaussian models can have estimation problems. Scientific Reports, 2016, 6, 26677.	1.6	108
16	Integrative modelling of animal movement: incorporating <i>in situ</i> habitat and behavioural information for a migratory marine predator. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122262.	1.2	91
17	Consequences of global shipping traffic for marine giants. Frontiers in Ecology and the Environment, 2019, 17, 39-47.	1.9	89
18	An Economical Custom-Built Drone for Assessing Whale Health. Frontiers in Marine Science, 2017, 4, .	1.2	85

#	Article	lF	Citations
19	Effect of Habitat Patch Characteristics on Abundance and Diversity of Insects in an Agricultural Landscape. Ecosystems, 1998, 1, 197-205.	1.6	78
20	Taking animal tracking to new depths: synthesizing horizontal–vertical movement relationships for four marine predators. Ecology, 2015, 96, 417-427.	1.5	78
21	Fine-scale movement behaviors of calopterygid damselflies are influenced by landscape structure: an experimental manipulation. Oikos, 2000, 88, 553-562.	1.2	7 3
22	The influence of matrix habitat on Aphthona flea beetle immigration to leafy spurge patches. Oecologia, 2001, 127, 287-294.	0.9	72
23	Estimating fishery-scale rates of discard mortality using conditional reasoning. Fisheries Research, 2012, 125-126, 318-330.	0.9	71
24	State-space methods for more completely capturing behavioral dynamics from animal tracks. Ecological Modelling, 2012, 235-236, 49-58.	1.2	71
25	Return Customers: Foraging Site Fidelity and the Effect of Environmental Variability in Wide-Ranging Antarctic Fur Seals. PLoS ONE, 2015, 10, e0120888.	1.1	67
26	A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags. Movement Ecology, 2020, 8, 31.	1.3	66
27	Estimation and simulation of foraging trips in landâ€based marine predators. Ecology, 2017, 98, 1932-1944.	1.5	58
28	Stateâ€space framework for estimating measurement error from doubleâ€tagging telemetry experiments. Methods in Ecology and Evolution, 2012, 3, 291-302.	2.2	57
29	Supervised accelerometry analysis can identify prey capture by penguins at sea. Journal of Experimental Biology, 2014, 217, 4295-302.	0.8	56
30	Spatiotemporal modelling of marine movement data using Template Model Builder (TMB). Marine Ecology - Progress Series, 2017, 565, 237-249.	0.9	48
31	Tracking the fidelity of Atlantic bluefin tuna released in Canadian waters to the Gulf of Mexico spawning grounds. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1700-1717.	0.7	46
32	Foraging movements of Leach's stormâ€petrels <i>Oceanodroma leucorhoa</i> during incubation. Journal of Avian Biology, 2014, 45, 305-314.	0.6	45
33	Incorrect Likelihood Methods Were Used to Infer Scaling Laws of Marine Predator Search Behaviour. PLoS ONE, 2012, 7, e45174.	1.1	44
34	High sea surface temperatures driven by a strengthening current reduce foraging success by penguins. Scientific Reports, 2016, 6, 22236.	1.6	42
35	Atlantic salmon (Salmo salar) smolt and early post-smolt migration and survival inferred from multi-year and multi-stock acoustic telemetry studies in the Gulf of St. Lawrence, northwest Atlantic. ICES Journal of Marine Science, 2019, 76, 1107-1121.	1.2	41
36	A standardisation framework for bioâ€logging data to advance ecological research and conservation. Methods in Ecology and Evolution, 2021, 12, 996-1007.	2.2	39

#	Article	IF	CITATIONS
37	Hierarchical influences of prey distribution on patterns of prey capture by a marine predator. Functional Ecology, 2017, 31, 1750-1760.	1.7	35
38	A hierarchical Bayesian approach to multiâ€state mark–recapture: simulations and applications. Journal of Applied Ecology, 2009, 46, 610-620.	1.9	34
39	Predator-borne acoustic transceivers and GPS tracking reveal spatiotemporal patterns of encounters with acoustically tagged fish in the open ocean. Marine Ecology - Progress Series, 2014, 501, 157-168.	0.9	33
40	Daily activity budgets reveal a quasi-flightless stage during non-breeding in Hawaiian albatrosses. Movement Ecology, 2014, 2, 23.	1.3	31
41	Animal-Borne Acoustic Transceivers Reveal Patterns of at-Sea Associations in an Upper-Trophic Level Predator. PLoS ONE, 2012, 7, e48962.	1.1	31
42	Recent prey capture experience and dynamic habitat quality mediate short-term foraging site fidelity in a seabird. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180788.	1.2	30
43	Animal Borne Ocean Sensors – AniBOS – An Essential Component of the Global Ocean Observing System. Frontiers in Marine Science, 2021, 8, .	1.2	30
44	Assessing threats to species at risk using stageâ€structured state–space models: mortality trends in skate populations. Ecological Applications, 2009, 19, 1347-1364.	1.8	29
45	Assessing Performance of Bayesian State-Space Models Fit to Argos Satellite Telemetry Locations Processed with Kalman Filtering. PLoS ONE, 2014, 9, e92277.	1.1	28
46	The retrospective analysis of Antarctic tracking data project. Scientific Data, 2020, 7, 94.	2.4	27
47	Behavioral attributes of turbine entrainment risk for adult resident fish revealed by acoustic telemetry and state-space modeling. Animal Biotelemetry, 2014, 2, 13.	0.8	25
48	Predicting krill swarm characteristics important for marine predators foraging off East Antarctica. Ecography, 2018, 41, 996-1012.	2.1	25
49	Movements and behaviour of blue whales satellite tagged in an Australian upwelling system. Scientific Reports, 2020, 10, 21165.	1.6	25
50	Migrating humpback whales show no detectable response to whale alarms off Sydney, Australia. Endangered Species Research, 2016, 29, 201-209.	1.2	25
51	Influence of dispersal, stochasticity, and an Allee effect on the persistence of weed biocontrol introductions. Ecological Modelling, 2007, 203, 521-526.	1.2	24
52	Individual-level Variation and Higher-level Interpretations of Space Use in Wide-ranging Species: An Albatross Case Study of Sampling Effects. Frontiers in Marine Science, 2015, 2, .	1.2	24
53	Calopteryx Damselfly Dispersions Arising from Multiscale Responses to Landscape Structure. Ecology and Society, 2000, 4, .	0.9	24
54	Finding mesopelagic prey in a changing Southern Ocean. Scientific Reports, 2019, 9, 19013.	1.6	20

#	Article	IF	Citations
55	A citizen science approach to longâ€ŧerm monitoring of humpback whales (<i>Megaptera) Tj ETQq1 1 0.78431</i>	.4 rgBT /O	verlock 10 Tf
56	Hierarchical State-Space Estimation of Leatherback Turtle Navigation Ability. PLoS ONE, 2010, 5, e14245.	1.1	20
57	Dynamic Fineâ€Scale Sea Icescape Shapes Adult Emperor Penguin Foraging Habitat in East Antarctica. Geophysical Research Letters, 2019, 46, 11206-11218.	1.5	18
58	Inferring Animal Densities from Tracking Data Using Markov Chains. PLoS ONE, 2013, 8, e60901.	1.1	15
59	Inter―and intrasex habitat partitioning in the highly dimorphic southern elephant seal. Ecology and Evolution, 2021, 11, 1620-1633.	0.8	14
60	Contrasting decadal trends in mortality between large and small individuals in skate populations in Atlantic Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 74-89.	0.7	13
61	How well can animals navigate? Estimating the circle of confusion from tracking data. Environmetrics, 2006, 17, 351-362.	0.6	12
62	Effect of matrix habitat on the spread of flea beetle introductions for biological control of leafy spurge. Landscape Ecology, 2007, 22, 883-896.	1.9	12
63	Identifying nonproportionality of fishery-independent survey data to estimate population trends and assess recovery potential for cusk (<i>Brosme brosme</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 413-425.	0.7	12
64	A multi-phase correlation search framework for mining non-taxonomic relations from unstructured text. Knowledge and Information Systems, 2014, 38, 641-667.	2.1	12
65	Transmitting speciesâ€interaction data from animalâ€borne transceivers through Service Argos using Bluetooth communication. Methods in Ecology and Evolution, 2014, 5, 864-871.	2.2	11
66	Putting the behavior into animal movement modeling: Improved activity budgets from use of ancillary tag information. Ecology and Evolution, 2016, 6, 8243-8255.	0.8	11
67	A Water Mass Classification Approach to Tracking Variability in the East Australian Current. Frontiers in Marine Science, 2020, 7, .	1.2	11
68	Probability of Detecting Marine Predator-Prey and Species Interactions Using Novel Hybrid Acoustic Transmitter-Receiver Tags. PLoS ONE, 2014, 9, e98117.	1.1	10
69	Costâ€effective mitigation strategies to reduce bycatch threats to cetaceans identified using returnâ€onâ€investment analysis. Conservation Biology, 2020, 34, 168-179.	2.4	10
70	Abundance estimates and habitat preferences of bottlenose dolphins reveal the importance of two gulfs in South Australia. Scientific Reports, 2019, 9, 8044.	1.6	9
71	Regional Variation in Winter Foraging Strategies by Weddell Seals in Eastern Antarctica and the Ross Sea. Frontiers in Marine Science, 2021, 8, .	1.2	7
72	A novel approach to quantifying the spatiotemporal behavior of instrumented grey seals used to sample the environment. Movement Ecology, 2015, 3, 20.	1.3	5

#	Article	IF	CITATIONS
73	Environmental drivers of population-level variation in the migratory and diving ontogeny of an Arctic top predator. Royal Society Open Science, 2022, 9, 211042.	1.1	5
74	Predator-derived bioregions in the Southern Ocean: Characteristics, drivers and representation in marine protected areas. Biological Conservation, 2022, 272, 109630.	1.9	5
75	Movements of southern elephant seals (Mirounga leonina) from Davis Base, Antarctica: combining population genetics and tracking data. Polar Biology, 2022, 45, 1163-1174.	0.5	3