
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2023878/publications.pdf Version: 2024-02-01

FIS VEDHOEVEN

#	Article	IF	CITATIONS
1	Genome-wide CRISPR-Cas9 screen identifies rationally designed combination therapies for <i>CRLF2-</i> rearranged Ph-like ALL. Blood, 2022, 139, 748-760.	1.4	11
2	An optimized measles virus glycoprotein-pseudotyped lentiviral vector production system to promote efficient transduction of human primary B cells. STAR Protocols, 2022, 3, 101228.	1.2	3
3	Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers, 2022, 14, 183.	3.7	8
4	CLEC12B Is a Melanocytic Gene Regulating the Color of the Skin. Journal of Investigative Dermatology, 2022, 142, 1858-1868.e8.	0.7	2
5	Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers, 2022, 14, 2392.	3.7	7
6	Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. , 2022, 10, e004244.		23
7	Pharmacological preconditioning protects from ischemia/reperfusionâ€induced apoptosis by modulating Bclâ€xL expression through a ROSâ€dependent mechanism. FEBS Journal, 2021, 288, 3547-3569.	4.7	8
8	Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice. Nature Microbiology, 2021, 6, 401-412.	13.3	46
9	<i>In Vivo</i> Hematopoietic Stem Cell Gene Therapy Might Become a Reality. Human Gene Therapy, 2021, 32, 14-16.	2.7	0
10	Baboon Envelope Pseudotyped "Nanoblades―Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34+ Cells and Knock-in of AAV6-Encoded Donor DNA in CD34+ Cells. Frontiers in Genome Editing, 2021, 3, 604371.	5.2	25
11	Genetic in vivo engineering of human T lymphocytes in mouse models. Nature Protocols, 2021, 16, 3210-3240.	12.0	20
12	Combination of PKCδ Inhibition with Conventional TKI Treatment to Target CML Models. Cancers, 2021, 13, 1693.	3.7	3
13	Agammaglobulinemia with normal B-cell numbers in a patient lacking Bob1. Journal of Allergy and Clinical Immunology, 2021, 147, 1977-1980.	2.9	12
14	NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. , 2021, 9, e002866.		21
15	Recent progress in genome editing for gene therapy applications: the French perspective. Human Gene Therapy, 2021, 32, 1059-1075.	2.7	0
16	Safe and Effective <i>In Vivo</i> Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Human Gene Therapy, 2021, 32, 31-42.	2.7	15
17	Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochemical Pharmacology, 2020, 174, 113711.	4.4	21
18	Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8+ T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity, 2020, 53, 824-839.e10.	14.3	85

#	Article	IF	CITATIONS
19	Humanized Mice Are Precious Tools for Preclinical Evaluation of CAR T and CAR NK Cell Therapies. Cancers, 2020, 12, 1915.	3.7	30
20	Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death and Disease, 2020, 11, 973.	6.3	20
21	Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses, 2020, 12, 1016.	3.3	41
22	New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis, 2020, 9, 73.	4.9	14
23	CBFβ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia. Cell Reports, 2020, 30, 299-307.e3.	6.4	6
24	Development of a Model for Chemical Screening Based on Collateral Sensitivity to Target BTK C481S Mutant. Cancers, 2020, 12, 901.	3.7	1
25	Combining T-cell-specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Advances, 2020, 4, 5702-5715.	5.2	24
26	Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Human Gene Therapy, 2019, 30, 1477-1493.	2.7	24
27	GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.	16.8	34
28	A Distinct Subset of Highly Proliferative and Lentiviral Vector (LV)-Transducible NK Cells Define a Readily Engineered Subset for Adoptive Cellular Therapy. Frontiers in Immunology, 2019, 10, 2001.	4.8	51
29	A Recurrent Activating Missense Mutation in Waldenström Macroglobulinemia Affects the DNA Binding of the ETS Transcription Factor SPI1 and Enhances Proliferation. Cancer Discovery, 2019, 9, 796-811.	9.4	30
30	The Future: InÂVivo CAR T Cell Gene Therapy. Molecular Therapy, 2019, 27, 707-709.	8.2	15
31	GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors. Cell Metabolism, 2019, 29, 1243-1257.e10.	16.2	56
32	Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector. Frontiers in Immunology, 2019, 10, 2873.	4.8	84
33	Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nature Communications, 2019, 10, 45.	12.8	195
34	CD46 Null Packaging Cell Line Improves Measles Lentiviral Vector Production and Gene Delivery to Hematopoietic Stem and Progenitor Cells. Molecular Therapy - Methods and Clinical Development, 2019, 13, 27-39.	4.1	10
35	A Novel BaEVRless-Pseudotyped Î ³ -Globin Lentiviral Vector Drives High and Stable Fetal Hemoglobin Expression and Improves Thalassemic ErythropoiesisIn Vitro. Human Gene Therapy, 2019, 30, 601-617.	2.7	8
36	Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Advances, 2019, 3, 461-475.	5.2	21

#	Article	IF	CITATIONS
37	IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Scientific Reports, 2018, 8, 256.	3.3	149
38	A kindred with mutant IKAROS and autoimmunity. Journal of Allergy and Clinical Immunology, 2018, 142, 699-702.e12.	2.9	39
39	Low-Protein Diet Induces IRE1α-Dependent Anticancer Immunosurveillance. Cell Metabolism, 2018, 27, 828-842.e7.	16.2	99
40	Consensus Statement of European Societies of Gene and Cell Therapy on the Reported Birth of Genome-Edited Babies in China. Human Gene Therapy, 2018, 29, 1337-1338.	2.7	3
41	<i>In vivo</i> generation of human <scp>CD</scp> 19― <scp>CAR</scp> T cells results in Bâ€cell depletion and signs of cytokine release syndrome. EMBO Molecular Medicine, 2018, 10, .	6.9	105
42	HSP110 sustains chronic NF-κB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization. Blood, 2018, 132, 510-520.	1.4	25
43	Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE, 2018, 13, e0192602.	2.5	28
44	A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism. PLoS Pathogens, 2018, 14, e1006908.	4.7	20
45	High SYK Expression Drives Constitutive Activation of CD21low B Cells. Journal of Immunology, 2017, 198, 4285-4292.	0.8	40
46	Baboon envelope pseudotyped lentiviral vectors: a highly efficient new tool to genetically manipulate T-cell acute lymphoblastic leukaemia-initiating cells. Leukemia, 2017, 31, 977-980.	7.2	5
47	Molecular and Functional Characterization of Lymphoid Progenitor Subsets Reveals a Bipartite Architecture of Human Lymphopoiesis. Immunity, 2017, 47, 680-696.e8.	14.3	33
48	Parkin-Independent Mitophagy Controls Chemotherapeutic Response in Cancer Cells. Cell Reports, 2017, 20, 2846-2859.	6.4	217
49	Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent. Blood Advances, 2017, 1, 2088-2104.	5.2	37
50	Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition. Journal of Clinical Investigation, 2017, 127, 2365-2377.	8.2	39
51	Gene Therapy in Fanconi Anemia: A Matter of Time, Safety and Gene Transfer Tool Efficiency. Current Gene Therapy, 2017, 16, 297-308.	2.0	14
52	Abstract LB-017: HSP110 sustains aberrant NFkB signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization. , 2017, , .		0
53	Gene-corrected human Munc13-4–deficient CD8+ T cells can efficiently restrict EBV-driven lymphoproliferation in immunodeficient mice. Blood, 2016, 128, 2859-2862.	1.4	26
54	682. Correction of CTLs Cytotoxic Function Defect by SIN-lentiviral Mediated Expression of Munc13-4 in Type 3 Familial Hemophagocytic Lymphohistiocytosis. Molecular Therapy, 2016, 24, S270.	8.2	0

#	Article	IF	CITATIONS
55	Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes. Biomaterials, 2016, 97, 97-109.	11.4	13
56	Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγcâ€∤―mice. Journal of Thrombosis and Haemostasis, 2016, 14, 2478-2492.	3.8	41
57	X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. Journal of Allergy and Clinical Immunology, 2016, 138, 1681-1689.e8.	2.9	60
58	The DNA Damage Response Regulates RAG1/2 Expression in Pre–B Cells through ATM-FOXO1 Signaling. Journal of Immunology, 2016, 197, 2918-2929.	0.8	27
59	Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood, 2016, 127, 3040-3053.	1.4	60
60	Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia. Cancer Discovery, 2016, 6, 972-985.	9.4	33
61	Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. Journal of Molecular Cell Biology, 2016, 8, 349-362.	3.3	76
62	Low carbohydrate diet prevents Mcl-1-mediated resistance to BH3-mimetics. Oncotarget, 2016, 7, 73270-73279.	1.8	1
63	An IGF2BP3-Cdk9 Pathway Governs the Human Fetal-Adult Megakaryocyte Transition. Blood, 2016, 128, 886-886.	1.4	0
64	1. Measles Virus Glycoprotein Pseudotyped Lentiviral Vectors Transduce Cytokine Stimulated and Resting Hematopoietic Stem Cells at an Efficiency Without Precedent. Molecular Therapy, 2015, 23, S1.	8.2	2
65	290. Baboon Envelope Pseudo Typed Lentiviral Vectors Mediate High-Level Gene Transfer in Human B Cells Allowing Secretion of FIX at Therapeutic Levels in NSG Mouse. Molecular Therapy, 2015, 23, S116.	8.2	0
66	566. Selective and Stable Transduction of Human CD4+ T Cells In Vivo Upon Systemic Administration of CD4-Targeted Lentiviral Vectors. Molecular Therapy, 2015, 23, S226.	8.2	0
67	Cyclic dinucleotides modulate human T ell response through monocyte cell death. European Journal of Immunology, 2015, 45, 3313-3323.	2.9	8
68	Exclusive Transduction of Human CD4+ T Cells upon Systemic Delivery of CD4-Targeted Lentiviral Vectors. Journal of Immunology, 2015, 195, 2493-2501.	0.8	49
69	A Lentiviral Vector Allowing Physiologically Regulated Membrane-anchored and Secreted Antibody Expression Depending on B-cell Maturation Status. Molecular Therapy, 2015, 23, 1734-1747.	8.2	41
70	Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Current Opinion in Pharmacology, 2015, 24, 79-85.	3.5	38
71	Erosion of the chronic myeloid leukaemia stem cell pool by PPARÎ ³ agonists. Nature, 2015, 525, 380-383.	27.8	237
72	Human Monocyte Recognition of Adenosine-Based Cyclic Dinucleotides Unveils the A2a G _{αs} Protein-Coupled Receptor Tonic Inhibition of Mitochondrially Induced Cell Death. Molecular and Cellular Biology, 2015, 35, 479-495.	2.3	18

#	Article	IF	CITATIONS
73	Lentiviral Vectors: Design and Applications. , 2015, , 3-28.		1
74	Targeting IRAK1 in T-Cell acute lymphoblastic leukemia. Oncotarget, 2015, 6, 18956-18965.	1.8	16
75	Mutations in the H, F, or M Proteins Can Facilitate Resistance of Measles Virus to Neutralizing Human Anti-MV Sera. Advances in Virology, 2014, 2014, 1-18.	1.1	19
76	Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood, 2014, 124, 1221-1231.	1.4	109
77	RUNX1-dependent RAG1 deposition instigates human TCR-δlocus rearrangement. Journal of Experimental Medicine, 2014, 211, 1821-1832.	8.5	19
78	Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood, 2014, 123, 1422-1424.	1.4	145
79	High Levels of SOX5 Decrease Proliferative Capacity of Human B Cells, but Permit Plasmablast Differentiation. PLoS ONE, 2014, 9, e100328.	2.5	30
80	Generation of transgenic mice expressing EGFP protein fused to NP68 MHC class I epitope using lentivirus vectors. Genesis, 2013, 51, 193-200.	1.6	5
81	TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nature Cell Biology, 2013, 15, 818-828.	10.3	99
82	CD19 and CD20 Targeted Vectors Induce Minimal Activation of Resting B Lymphocytes. PLoS ONE, 2013, 8, e79047.	2.5	24
83	Stem Cell and T-Cell Gene Therapy Using SIN-Lentiviral Vector In Type 3 Familial Hemophagocytic Lymphohistiocytosis. Blood, 2013, 122, 4214-4214.	1.4	2
84	Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies. PLoS ONE, 2013, 8, e52306.	2.5	20
85	Erosion Of The Chronic Myeloid Leukemia Stem Cell Pool By PPARÎ ³ Agonists. Blood, 2013, 122, 5197-5197.	1.4	0
86	Glut1-mediated glucose transport regulates HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2549-2554.	7.1	130
87	Lentiviral Vectors Displaying Modified Measles Virus gp Overcome Pre-existing Immunity in In Vivo-like Transduction of Human T and B Cells. Molecular Therapy, 2012, 20, 1699-1712.	8.2	33
88	Measles Virus Glycoprotein-Pseudotyped Lentiviral Vectors Are Highly Superior to Vesicular Stomatitis Virus G Pseudotypes for Genetic Modification of Monocyte-Derived Dendritic Cells. Journal of Virology, 2012, 86, 5192-5203.	3.4	26
89	Advances in Foamy Virus Vector Technology and Disease Correction Could Speed the Path to Clinical Application. Molecular Therapy, 2012, 20, 1105-1107.	8.2	5
90	A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice. Blood, 2012, 119, 1139-1150.	1.4	41

#	Article	IF	CITATIONS
91	Efficient transduction of healthy and malignant plasma cells by lentiviral vectors pseudotyped with measles virus glycoproteins. Leukemia, 2012, 26, 1663-1670.	7.2	9
92	TLX Homeodomain Oncogenes Mediate T Cell Maturation Arrest in T-ALL via Interaction with ETS1 and Suppression of TCRα Gene Expression. Cancer Cell, 2012, 21, 563-576.	16.8	81
93	Stem Cell Factor-Displaying Simian Immunodeficiency Viral Vectors Together with a Low Conditioning Regimen Allow for Long-Term Engraftment of Gene-Marked Autologous Hematopoietic Stem Cells in Macaques. Human Gene Therapy, 2012, 23, 754-768.	2.7	10
94	In Vivo Gene Delivery into hCD34+ Cells in a Humanized Mouse Model. Methods in Molecular Biology, 2011, 737, 367-390.	0.9	17
95	Production of SIV Vectors for Gene Delivery. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5598-pdb.prot5598.	0.3	0
96	Lentiviral Vectors. Methods in Molecular Biology, 2011, 737, 183-209.	0.9	33
97	Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting. Molecular Therapy, 2011, 19, 1193-1198.	8.2	45
98	Measles Virus Glycoprotein-Pseudotyped Lentiviral Vector-Mediated Gene Transfer into Quiescent Lymphocytes Requires Binding to both SLAM and CD46 Entry Receptors. Journal of Virology, 2011, 85, 5975-5985.	3.4	60
99	Lentiviral vectors and transduction of human cancer B cells. Blood, 2010, 116, 498-500.	1.4	17
100	Optimized gene transfer into human primary leukemic T cell with NOD-SCID/leukemia-initiating cell activity. Leukemia, 2010, 24, 646-649.	7.2	15
101	Advances in the Field of Lentivector-based Transduction of T and B Lymphocytes for Gene Therapy. Molecular Therapy, 2010, 18, 1748-1757.	8.2	62
102	TRF2 and Apollo Cooperate with Topoisomerase $2\hat{l}_{\pm}$ to Protect Human Telomeres from Replicative Damage. Cell, 2010, 142, 230-242.	28.9	155
103	Hematopoietic Stem Cell Targeting with Surface-Engineered Lentiviral Vectors. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5276.	0.3	4
104	Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors. Blood, 2009, 114, 3173-3180.	1.4	82
105	Engineering the Surface Glycoproteins of Lentiviral Vectors for Targeted Gene Transfer. Cold Spring Harbor Protocols, 2009, 2009, pdb.top59.	0.3	6
106	Single-Chain Antibodies That Target Lentiviral Vectors to MHC Class II on Antigen-Presenting Cells. Human Gene Therapy, 2009, 20, 554-562.	2.7	22
107	Lentiviral Vector Gene Transfer into Human T Cells. Methods in Molecular Biology, 2009, 506, 97-114.	0.9	27
108	Improved lentiviral vectors for Wiskott–Aldrich syndrome gene therapy mimic endogenous expression profiles throughout haematopoiesis. Gene Therapy, 2008, 15, 930-941.	4.5	34

#	Article	IF	CITATIONS
109	Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood, 2008, 112, 4843-4852.	1.4	135
110	Strategies for Targeting Lentiviral Vectors. Current Gene Therapy, 2008, 8, 449-460.	2.0	76
111	IL-7Rα Gene Expression Is Inversely Correlated with Cell Cycle Progression in IL-7-Stimulated T Lymphocytes. Journal of Immunology, 2006, 176, 6702-6708.	0.8	57
112	Targeted retroviral vectors displaying a cleavage site-engineered hemagglutinin (HA) through HA〓protease interactions. Molecular Therapy, 2006, 14, 735-744.	8.2	32
113	Epigenetic silencing and tissue independent expression of a novel tetracycline inducible system in doubleâ€transgenic pigs. FASEB Journal, 2006, 20, 1200-1202.	0.5	76
114	Novel lentiviral vectors displaying "early-acting cytokines―selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells. Blood, 2005, 106, 3386-3395.	1.4	42
115	Surface-engineering of lentiviral vectors. Journal of Gene Medicine, 2004, 6, S83-S94.	2.8	52
116	Inadvertent autoimmunity in EPO gene transfer. Blood, 2004, 103, 3248-3249.	1.4	1
117	Novel Lentiviral Vectors Displaying â€~Early-Acting-Cytokines' Preferentially Promote the Survival and Transduction of NOD/SCID Repopulating Human Hematopoietic Stem Cells Blood, 2004, 104, 2107-2107.	1.4	4
118	IL-7 surface-engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood, 2003, 101, 2167-2174.	1.4	103
119	Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell–activating polypeptide. Blood, 2002, 99, 2342-2350.	1.4	91
120	CYTOMEGALOVIRUS EARLY PROMOTER INDUCED EXPRESSION OF hCD59 IN PORCINE ORGANS PROVIDES PROTECTION AGAINST HYPERACUTE REJECTION1. Transplantation, 2001, 72, 1898-1906.	1.0	58
121	Evaluation of Retroviral Vector Design in Defined Chromosomal Loci by Flp-Mediated Cassette Replacement. Human Gene Therapy, 2001, 12, 933-944.	2.7	36
122	Detection of transcripts via fluorescencein-situ hybridization and confocal microscopy in whole mounts of roots ofArabidopsis thaliana. Plant Molecular Biology Reporter, 1997, 15, 22-37.	1.8	7