Shin-Ichiro Shoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2023826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A protecting group–free approach for synthesizing <i>C</i> -glycosides through glycosyl dithiocarbamates. Organic and Biomolecular Chemistry, 2021, 19, 3134-3138.	2.8	12
2	Influenza Virus Precision Diagnosis and Continuous Purification Enabled by Neuraminidase-Resistant Glycopolymer-Coated Microbeads. ACS Applied Materials & Interfaces, 2021, 13, 46260-46269.	8.0	6
3	Efficient generation of thiolate sugars from glycosyl Bunte salts and its application to S-glycoside synthesis. Tetrahedron Letters, 2020, 61, 152198.	1.4	6
4	Synthesis of Polysaccharides I: Hydrolase as Catalyst. Green Chemistry and Sustainable Technology, 2019, , 15-46.	0.7	2
5	[Review] How is the Hydroxy Group at 2-Position Involved in the Endoglucanase-catalyzed Hydrolyzation or Transglycosylation?. Bulletin of Applied Glycoscience, 2019, 9, 83-89.	0.0	0
6	Glycosyl Bunte Salts: A Class of Intermediates for Sugar Chemistry. Organic Letters, 2018, 20, 76-79.	4.6	25
7	Chemistry of 1,2-Anhydro Sugars. Chimia, 2018, 72, 874.	0.6	9
8	First protection-free protocol for synthesis of 1-deoxy sugars through glycosyl dithiocarbamate intermediates. Tetrahedron Letters, 2018, 59, 3428-3431.	1.4	3
9	First Detection of Unprotected 1,2-Anhydro Aldopyranoses. Chemistry Letters, 2017, 46, 1024-1026.	1.3	13
10	Development of chemical and chemo-enzymatic glycosylations. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 125-145.	3.8	21
11	Protection-free synthesis of glycosyl dithiocarbamates in aqueous media by using 2-chloroimidazolinium reagent. Tetrahedron Letters, 2016, 57, 3529-3531.	1.4	14
12	Alternating copolymerization of cyclic germylenes with N-phenyl-p-quinoneimine via oxidation-reduction process. Polymer Journal, 2016, 48, 969-972.	2.7	2
13	Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chemical Reviews, 2016, 116, 2307-2413.	47.7	401
14	Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2- <i>cis</i> -Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors. Chemistry Letters, 2015, 44, 846-848.	1.3	16
15	The One-step Preparation of Sugar Oxazoline Enables the Synthesis of Glycoprotein Having a Definite Structure. Trends in Glycoscience and Glycotechnology, 2015, 27, E35-E42.	0.1	2
16	Oxidation-reduction alternating copolymerization of germylene and N-phenyl-p-quinoneimine. Polymer Journal, 2015, 47, 31-36.	2.7	3
17	Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities. PLoS ONE, 2015, 10, e0132848.	2.5	83
18	Sugar Oxazolines as Directly Preparable Glycosyl Donors from Unprotected N-Acetyl-2-Amino Sugars: Towards One-Pot Chemo-Enzymatic Synthesis of Glycoproteins Catalyzed by N-Acetylglucosaminidases. , 2015, , 401-407.		0

Shin-Ichiro Shoda

#	Article	IF	CITATIONS
19	The One-step Preparation of Sugar Oxazoline Enables the Synthesis of Glycoprotein Having a Definite Structure. Trends in Glycoscience and Glycotechnology, 2015, 27, J35-J42.	0.1	2
20	Protecting-group-free synthesis of glycopolymers bearing thioglycosides via one-pot monomer synthesis from free saccharides. Journal of Polymer Science Part A, 2014, 52, n/a-n/a.	2.3	3
21	Sugar Oxazolines as Directly Preparable Glycosyl Donors from Unprotected N-Acetyl-2-Amino Sugars: Towards One-Pot Chemoenzymatic Synthesis of Glycoproteins Catalyzed by N-Acetylglucosaminidases. , 2014, , 1-6.		0
22	Direct Introduction of Detachable Fluorescent Tag into Oligosaccharides. Chemistry Letters, 2013, 42, 1038-1039.	1.3	16
23	Protection-free Synthesis of Alkyl Glycosides under Hydrogenolytic Conditions. Chemistry Letters, 2013, 42, 1235-1237.	1.3	10
24	Facile Synthesis of Oligosaccharide–Poly(<scp>l</scp> -lactide) Conjugates Forming Nanoparticles with Saccharide Core and Shell. Chemistry Letters, 2013, 42, 197-199.	1.3	10
25	Organic Synthesis as Culture. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 1115-1115.	0.1	1
26	α-N-Acetylgalactosaminidase from Infant-associated Bifidobacteria Belonging to Novel Glycoside Hydrolase Family 129 Is Implicated in Alternative Mucin Degradation Pathway. Journal of Biological Chemistry, 2012, 287, 693-700.	3.4	79
27	One-pot Chemoenzymatic Route to Chitoheptaose via Specific Transglycosylation of Chitopentaose–Oxazoline on Chitinase-template. Chemistry Letters, 2012, 41, 689-690.	1.3	21
28	A Practical Oneâ€Step Synthesis of 1,2â€Oxazoline Derivatives from Unprotected Sugars and Its Application to Chemoenzymatic <i>β</i> â€ <i>N</i> â€Acetylglucosaminidation of Disialoâ€oligosaccharide. Helvetica Chimica Acta, 2012, 95, 1928-1936.	1.6	64
29	A dimethoxytriazine type glycosyl donor enables a facile chemo-enzymatic route toward α-linked N-acetylglucosaminyl-galactose disaccharide unit from gastric mucin. Chemical Communications, 2012, 48, 5560.	4.1	21
30	4,6-Dimethoxy-1,3,5-triazin-2-yl β-d-glycosaminides: Novel Substrates for Transglycosylation Reaction Catalyzed by Exo-l²-d-glucosaminidase from <i>Amycolatopsis orientalis</i> . Journal of Carbohydrate Chemistry, 2012, 31, 634-646.	1.1	10
31	Direct Dehydrative Pyridylthioâ€Glycosidation of Unprotected Sugars in Aqueous Media Using 2â€Chloroâ€1,3â€dimethylimidazolinium Chloride as a Condensing Agent. Chemistry - an Asian Journal, 2011, 6, 1876-1885.	3.3	47
32	Synthesis of Nonâ€natural Xyloglucans by Polycondensation of 4,6â€Dimethoxyâ€1,3,5â€triazinâ€2â€yl Oligosaccharide Monomers Catalyzed by Endoâ€ î² â€1,4â€glucanase. Macromolecular Symposia, 2010, 297, 200-209.	0.7	11
33	Efficient transfer of sialo-oligosaccharide onto proteins by combined use of a glycosynthase-like mutant of Mucor hiemalis endoglycosidase and synthetic sialo-complex-type sugar oxazoline. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 1203-1209.	2.4	87
34	Novel dialkoxytriazine-type glycosyl donors for cellulase-catalysed lactosylation. Organic and Biomolecular Chemistry, 2010, 8, 5126.	2.8	31
35	Direct synthesis of 1,6-anhydro sugars from unprotected glycopyranoses by using 2-chloro-1,3-dimethylimidazolinium chloride. Tetrahedron Letters, 2009, 50, 2154-2157.	1.4	80
36	One-step conversion of unprotected sugars to β-glycosyl azides using 2-chloroimidazolinium salt in aqueous solution. Chemical Communications, 2009, , 3378.	4.1	173

SHIN-ICHIRO SHODA

#	ARTICLE	IF	CITATIONS
37	Efficient Synthesis of Sugar Oxazolines from Unprotected <i>N</i> -Acetyl-2-amino Sugars by Using Chloroformamidinium Reagent in Water. Journal of Organic Chemistry, 2009, 74, 2210-2212.	3.2	165
38	Direct Transformation of Unprotected Sugars to Aryl 1-Thio-β-glycosides in Aqueous Media Using 2-Chloro-1,3-dimethylimidazolinium Chloride. Chemistry Letters, 2009, 38, 458-459.	1.3	63
39	A novel glycosyl donor for chemo-enzymatic oligosaccharide synthesis: 4,6-dimethoxy-1,3,5-triazin-2-yl glycoside. Chemical Communications, 2008, , 2016.	4.1	35
40	Colorimetric Assay for Evaluating Glycosyl Fluoride-hydrolyzing Activity of Glycosidase by Using Alizarin Complexon Reagent. Chemistry Letters, 2007, 36, 16-17.	1.3	15
41	Design and Utilization of Chitinases with Low Hydrolytic Activities. Trends in Glycoscience and Glycotechnology, 2007, 19, 165-180.	0.1	7
42	Preparation of polysaccharide–polymethacrylate hybrid materials by radical polymerization of cationic methacrylate monomer in the presence of anionic polysaccharide. Polymers for Advanced Technologies, 2007, 18, 643-646.	3.2	4
43	Chemo-enzymatic Synthesis of Novel Oligo-N-acetyllactosamine Derivatives having a β(1-4)–β(1-6) Repeating Unit by Using Transition State Analogue Substrate. Cellulose, 2006, 13, 477-484.	4.9	11
44	Stepwise synthesis of chitooligosaccharides through a transition-state analogue substrate catalyzed by mutants of chitinase A1 from Bacillus circulans WL-12. Holzforschung, 2006, 60, 485-491.	1.9	18
45	Irradiation of Ultrasound onto Substrate Mixture Enhances Transglycosylating Activity of Commercial α-Amylase Preparation. Chemistry Letters, 2005, 34, 1384-1385.	1.3	2
46	Synthesis of Glucose-Containing Polyaniline by the Oxidative Polymerization ofN-Glucosylaniline. Macromolecular Rapid Communications, 2005, 26, 103-106.	3.9	10
47	Direct Conversion of 2-Acetamido-2-deoxysugars to 1,2-Oxazoline Derivatives by Dehydrative Cyclization in Water. Heterocycles, 2004, 63, 1531.	0.7	12
48	An environmentally benign and practical synthesis of sugar orthoesters promoted by potassium fluoride. Tetrahedron Letters, 2004, 45, 8847-8848.	1.4	19
49	Green Process in Glycotechnology. Bulletin of the Chemical Society of Japan, 2003, 76, 1-13.	3.2	63
50	New Methods for Architectures of Glyco-materials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2003, 61, 1207-1217.	0.1	6
51	A Facile Method for Synthesis of 1,2-Oxazoline Derivative ofN-Acetylglucosamine Promoted by Potassium Fluoride. Chemistry Letters, 2002, 31, 150-151.	1.3	9
52	Efficient Method for the Elongation of the N-Acetylglucosamine Unit by Combined Use of Chitinase and -Galactosidase. Helvetica Chimica Acta, 2002, 85, 3919-3936.	1.6	42
53	A novel disaccharide substrate having 1,2-oxazoline moiety for detection of transglycosylating activity of endoglycosidases. Biochimica Et Biophysica Acta - General Subjects, 2001, 1528, 9-14.	2.4	112

54 Enzymatic Glycosylation. , 2001, , 1465-1496.

SHIN-ICHIRO SHODA

#	Article	IF	CITATIONS
55	Chitinase-catalyzed Synthesis of Oligosaccharides by Using a Sugar Oxazoline as Glycosyl Donor. Heterocycles, 2000, 52, 599.	0.7	19
56	Enzymatic ringâ€opening polyaddition for chitin synthesis: A cationic mechanism in basic solution?. Macromolecular Symposia, 1998, 132, 415-420.	0.7	5
57	Construction of Non-natural Polysaccharide Chains by Glycanases. Journal of Fiber Science and Technology, 1998, 54, P323-P327.	0.0	1
58	Choroselective Enzymatic Polymerization for Synthesis of Natural Polysaccharides. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 2135-2142.	2.2	15
59	Title is missing!. Cellulose, 1997, 4, 161-172.	4.9	53
60	A novel method for synthesis of chitobiose via enzymatic glycosylation using a sugar oxazoline as glycosyl donor. Tetrahedron Letters, 1997, 38, 2111-2112.	1.4	56
61	Novel Oxidationâ^'Reduction Copolymerization of a Germylene with Ethylene or Propylene Sulfide Producing a 1:1:α Periodic Copolymer. Macromolecules, 1996, 29, 486-488.	4.8	11
62	Synthesis of Artificial Chitin:Â Irreversible Catalytic Behavior of a Glycosyl Hydrolase through a Transition State Analogue Substrate. Journal of the American Chemical Society, 1996, 118, 13113-13114.	13.7	212
63	Poly(germanium thiolate): a new class of organometallic polymers having a germanium-sulfur bond in the main chain. Macromolecular Chemistry and Physics, 1996, 197, 2437-2445.	2.2	18
64	Chemical Synthesis of Native-Type Cellulose and Its Analogues via Enzymatic Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1375-1384.	2.2	27
65	Novel polymerizations of germylenes and their reaction mechanisms. Macromolecular Symposia, 1995, 98, 91-100.	0.7	5
66	Enzymatic polymerization to polysaccharides of wellâ€defined structure. Macromolecular Symposia, 1995, 99, 179-184.	0.7	16
67	Direct visualization of synthetic cellulose formation via enzymatic polymerization using transmission electron microscopy. Macromolecular Chemistry and Physics, 1994, 195, 1319-1326.	2.2	43
68	Synthesis of 6- and/or 6′-O-methylated cellobiosyl fluorides: new monomers for enzymatic polymerization. Macromolecular Rapid Communications, 1994, 15, 751-756.	3.9	20
69	Precise architecture of 1:1 alternating copolymers between germylenes and <i>p</i> â€benzoquinone derivatives: First clear―cut evidence of biradical mechanism in polymerization chemistry. Macromolecular Symposia, 1994, 77, 229-235.	0.7	0
70	Enzymatic Polymerization Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1994, 52, 754-764.	0.1	8
71	A novel metal-containing polymer: Poly(germanium enolate). Advanced Materials, 1993, 5, 57-59.	21.0	11
72	Ring-opening-closing alternating copolymerization via zwitterion intermediates. Makromolekulare Chemie Macromolecular Symposia, 1993, 73, 137-146.	0.6	0

Shin-Ichiro Shoda

#	Article	IF	CITATIONS
73	A germylene and stannylene as polymerization comonomer and initiator. Makromolekulare Chemie Macromolecular Symposia, 1992, 54-55, 225-231.	0.6	6
74	Enzymatic polymerization: The first in vitro synthesis of cellulose via nonbiosynthetic path catalyzed by cellulase. Makromolekulare Chemie Macromolecular Symposia, 1992, 54-55, 509-518.	0.6	40
75	Chemical Synthesis of Cellulose by Enzymatic Polymerization. Journal of Fiber Science and Technology, 1992, 48, P148-P152.	0.0	1
76	Synthesis and surfactant property of copolymers having a poly(2-oxazoline) graft chain. Journal of Polymer Science Part A, 1992, 30, 1489-1494.	2.3	37
77	Alternation Copolymerization of Vinylphosphonic Acid Monoethyl Ester with Cyclic Phosphonites Involving Proton-Transfer Polymer Journal, 1992, 24, 1205-1214.	2.7	1
78	Hydrogen-Transfer Alternating Copolymerization of P-Ethenyl-N-n-propylphosphonamidic Acid Ethyl Ester with Cyclic Phosphonites Involving Oxidation-Reduction Process. Polymer Journal, 1991, 23, 1099-1104.	2.7	4
79	AN EFFICIENT METHOD FOR GLUCOSYLATION OF HYDROXY COMPOUNDS USING GLUCOPYRANOSYL FLUORIDE. Chemistry Letters, 1981, 10, 431-432.	1.3	365
80	AN EFFICIENT GLUCOSYLATION OF ALCOHOL USING 1-THIOGLUCOSIDE DERIVATIVE. Chemistry Letters, 1979, 8, 487-490.	1.3	80
81	Glycoside Synthesis from Anomeric Halides. , 0, , 29-93.		11