Clara Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2023701/publications.pdf

Version: 2024-02-01

172457 197818 2,530 62 29 49 citations h-index g-index papers 64 64 64 4053 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices. Dalton Transactions, 2021, 50, 9983-10013.	3.3	13
2	CNT-based Materials as Electrodes for Flexible Supercapacitors. U Porto Journal of Engineering, 2021, 7, 151-162.	0.4	3
3	Au/Ag nanoparticles-decorated TiO2 with enhanced catalytic activity for nitroarenes reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126614.	4.7	19
4	Smart dual-functional energy storage/fluorescent textile device based on a new redox-active Mn-doped ZnS solid-gel electrolyte. Chemical Engineering Journal, 2021, 426, 131274.	12.7	2
5	Recent Advances in Functional Thermoelectric Materials for Printed Electronics. , 2021, , 79-122.		O
6	An Interdigital Planar Energy Harvesting/Storage Device Based On an Ionic Solid–Gel Polymer. ACS Applied Electronic Materials, 2021, 3, 696-703.	4.3	12
7	Unveiling the role of oxidative treatments on the electrochemical performance of carbon nanotube-based cotton textile supercapacitors. Carbon Trends, 2021, 5, 100137.	3.0	7
8	Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomaterials, 2021, 11, 3016.	4.1	11
9	Fe3O4@Au nanoparticles-based magnetoplatform for the HMGA maize endogenous gene electrochemical genosensing. Talanta, 2020, 206, 120220.	5.5	12
10	Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon nanotubes for enhanced energy storage. Journal of Materials Science, 2020, 55, 10121-10141.	3.7	20
11	Hydrothermal Carbon/Carbon Nanotube Composites as Electrocatalysts for the Oxygen Reduction Reaction. Journal of Composites Science, 2020, 4, 20.	3.0	6
12	Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing., 2020,, 611-714.		11
13	Supported Vanadium Catalysts: Heterogeneous Molecular Complexes, Electrocatalysis and Biomass Transformation. RSC Catalysis Series, 2020, , 241-284.	0.1	0
14	Printed Flexible μ-Thermoelectric Device Based on Hybrid Bi ₂ Te ₃ /PVA Composites. ACS Applied Materials & Interfaces, 2019, 11, 8969-8981.	8.0	42
15	Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coordination Chemistry Reviews, 2019, 394, 104-134.	18.8	74
16	Chronoamperometric magnetogenosensing for simultaneous detection of two Roundup Readyâ,,¢ soybean lines: GTS 40-3-2 and MON89788. Sensors and Actuators B: Chemical, 2019, 283, 262-268.	7.8	3
17	Light driven PVDF fibers based on photochromic nanosilica@naphthopyran fabricated by wet spinning. Applied Surface Science, 2019, 470, 951-958.	6.1	28
18	Electrochemical genoassays on gold-coated magnetic nanoparticles to quantify genetically modified organisms (GMOs) in food and feed as GMO percentage. Biosensors and Bioelectronics, 2018, 110, 147-154.	10.1	26

#	Article	IF	CITATIONS
19	l-serine-functionalized montmorillonite decorated with Au nanoparticles: A new highly efficient catalyst for the reduction of 4-nitrophenol. Journal of Catalysis, 2018, 361, 143-155.	6.2	31
20	Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future., 2018,, 59-116.		34
21	Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology. Chemical Engineering Journal, 2018, 350, 856-866.	12.7	24
22	Multifunctional mixed valence N-doped CNT@MFe ₂ O ₄ hybrid nanomaterials: from engineered one-pot coprecipitation to application in energy storage paper supercapacitors. Nanoscale, 2018, 10, 12820-12840.	5.6	26
23	A novel generation of hybrid photochromic vinylidene-naphthofuran silica nanoparticles through fine-tuning of surface chemistry. Dalton Transactions, 2017, 46, 9076-9087.	3.3	7
24	Highly Active Ruthenium Supported on Magnetically Recyclable Chitosanâ€Based Nanocatalyst for Nitroarenes Reduction. ChemCatChem, 2017, 9, 3930-3941.	3.7	31
25	Naphthopyran-Based Silica Nanoparticles as New High-Performance Photoresponsive Materials. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7221-7231.	8.0	34
26	Screen-Printed Photochromic Textiles through New Inks Based on SiO ₂ @naphthopyran Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28935-28945.	8.0	53
27	Highly Monodisperse Fe ₃ O ₄ @Au Superparamagnetic Nanoparticles as Reproducible Platform for Genosensing Genetically Modified Organisms. ACS Sensors, 2016, 1, 1044-1053.	7.8	49
28	Magnetically recyclable mesoporous iron oxide–silica materials for the degradation of acetaminophen in water under mild conditions. Polyhedron, 2016, 106, 125-131.	2.2	10
29	Physicochemical characterization of organosilylated halloysite clay nanotubes. Microporous and Mesoporous Materials, 2016, 219, 145-154.	4.4	79
30	Architectured design of superparamagnetic Fe ₃ O ₄ nanoparticles for application as MRI contrast agents: mastering size and magnetism for enhanced relaxivity. Journal of Materials Chemistry B, 2015, 3, 6261-6273.	5.8	39
31	Lanthano phosphomolybdate-decorated silica nanoparticles: novel hybrid materials with photochromic properties. Dalton Transactions, 2015, 44, 4582-4593.	3.3	15
32	MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sensors and Actuators B: Chemical, 2015, 218, 128-136.	7.8	83
33	Automatized and desktop AC-susceptometer for the in situ and real time monitoring of magnetic nanoparticles' synthesis by coprecipitation. Review of Scientific Instruments, 2015, 86, 043904.	1.3	6
34	l-Serine functionalized clays: Preparation and characterization. Polyhedron, 2015, 102, 121-129.	2.2	8
35	Gold-supported magnetically recyclable nanocatalysts: a sustainable solution for the reduction of 4-nitrophenol in water. RSC Advances, 2015, 5, 5131-5141.	3.6	60
36	Influence of ceria distribution on the redox behaviour of nanoparticulated CeO ₂ â€SiO ₂ systems with application in catalysis. Surface and Interface Analysis, 2014, 46, 712-715.	1.8	8

#	Article	IF	CITATIONS
37	Efficient immobilization of montmorillonite onto cotton textiles through their functionalization with organosilanes. Applied Clay Science, 2014, 101, 304-314.	5.2	18
38	Gold nanoparticles decorated on Bingel–thiol functionalized multiwall carbon nanotubes as an efficient and robust catalyst. Applied Catalysis A: General, 2014, 486, 150-158.	4.3	27
39	Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Journal of Colloid and Interface Science, 2014, 432, 207-213.	9.4	99
40	Tailored design of Co _x Mn _{1â^'x} Fe ₂ O ₄ nanoferrites: a new route for dual control of size and magnetic properties. Journal of Materials Chemistry C, 2014, 2, 5818-5828.	5. 5	52
41	Silica nanoparticles functionalized with a thermochromic dye for textile applications. Journal of Materials Science, 2013, 48, 5085-5092.	3.7	32
42	Alkene epoxidation by manganese(III) complexes immobilized onto nanostructured carbon CMK-3. Catalysis Today, 2013, 203, 103-110.	4.4	45
43	Photocatalytic degradation of Reactive Black 5 with TiO2-coated magnetic nanoparticles. Catalysis Today, 2013, 209, 116-121.	4.4	69
44	Electrical conductivity of LTA-zeolite in the presence of poly(vinyl alcohol) and poly(vinyl) Tj ETQq0 0 0 rgBT /Ov	erlock 10 7	rf 50 462 Td (
45	Hybrid layer-by-layer films based on lanthanide-bridged silicotungstates and poly(ethylenimine). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 302-309.	4.7	21
46	Superparamagnetic MFe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chemistry of Materials, 2012, 24, 1496-1504.	6.7	446
47	Green oxidation catalysis with metal complexes: from bulk to nano recyclable hybrid catalysts. Catalysis, 2012, , 116-203.	1.0	30
48	Functionalization of textiles with multi-walled carbon nanotubes by a novel dyeing-like process. Journal of Materials Science, 2012, 47, 5263-5275.	3.7	36
49	Oxidovanadium(IV) acetylacetonate immobilized onto CMK-3 for heterogeneous epoxidation of geraniol. Microporous and Mesoporous Materials, 2012, 160, 67-74.	4.4	37
50	Unravelling the effect of interparticle interactions and surface spin canting in $\langle i \rangle \hat{I}^3 \langle i \rangle$ -Fe2O3@SiO2 superparamagnetic nanoparticles. Journal of Applied Physics, 2011, 109, .	2.5	38
51	[VO(acac)2] hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol. Catalysis Science and Technology, 2011, 1, 784.	4.1	51
52	Designing Novel Hybrid Materials by One-Pot Co-condensation: From Hydrophobic Mesoporous Silica Nanoparticles to Superamphiphobic Cotton Textiles. ACS Applied Materials & Diterfaces, 2011, 3, 2289-2299.	8.0	147
53	Epoxidation of olefins catalyzed by manganese(III) salen complexes grafted to porous heterostructured clays. Applied Clay Science, 2011, 53, 195-203.	5.2	55
54	Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon, 2011, 49, 3441-3453.	10.3	55

#	Article	IF	CITATIONS
55	Oxidovanadium(IV) Complexes of 3-Hydroxy-4-pyrone and 3-Hydroxy-4-pyridinone Ligands: A New Generation of Homogeneous Catalysts for the Epoxidation of Geraniol. Catalysis Letters, 2010, 135, 98-104.	2.6	11
56	Superparamagnetic \hat{I}^3 -Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Transactions, 2010, 39, 2842.	3.3	109
57	Designing heterogeneous oxovanadium and copper acetylacetonate catalysts: Effect of covalent immobilisation in epoxidation and aziridination reactions. Journal of Molecular Catalysis A, 2009, 312, 53-64.	4.8	59
58	Grafting of vanadyl acetylacetonate onto organo-hexagonal mesoporous silica and catalytic activity in the allylic epoxidation of geraniol. Polyhedron, 2009, 28, 994-1000.	2.2	52
59	Vanadyl acetylacetonate anchored onto amine-functionalised clays and catalytic activity in the epoxidation of geraniol. Journal of Molecular Catalysis A, 2008, 283, 5-14.	4.8	76
60	Copper acetylacetonate anchored onto amine-functionalised clays. Journal of Colloid and Interface Science, 2007, 316, 570-579.	9.4	67
61	Design of electromagnetic shielding textiles based on industrialâ€grade multiwalled carbon nanotubes and graphene nanoplatelets by dipâ€padâ€dry process. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	4
62	Scalable Flexible Electromagnetic Interference Shielding Textiles Based on MWCNTs and PEDOT:PSS. Solid State Phenomena, 0, 333, 161-169.	0.3	O