## Jinsheng Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2023560/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nature Communications, 2019, 10, 3038.                                                                                  | 5.8  | 297       |
| 2  | Highâ€Efficiency Organic Solar Cells Based on a Low ost Fully Nonâ€Fused Electron Acceptor. Advanced<br>Functional Materials, 2021, 31, 2101742.                                                                                            | 7.8  | 98        |
| 3  | Simultaneous enhancement of the molecular planarity and the solubility of non-fullerene acceptors:<br>effect of aliphatic side-chain substitution on the photovoltaic performance. Journal of Materials<br>Chemistry A, 2017, 5, 7776-7783. | 5.2  | 87        |
| 4  | Matrix-Assisted Poling of Monolithic Bridge-Disubstituted Organic NLO Chromophores. Chemistry of<br>Materials, 2014, 26, 872-874.                                                                                                           | 3.2  | 86        |
| 5  | Highâ€Efficiency Asâ€Cast Organic Solar Cells Based on Acceptors with Steric Hindrance Induced Planar<br>Terminal Group. Advanced Energy Materials, 2019, 9, 1901280.                                                                       | 10.2 | 86        |
| 6  | Tuning the dipole moments of nonfullerene acceptors with an asymmetric terminal strategy forÂhighly<br>efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 8889-8896.                                                 | 5.2  | 86        |
| 7  | Triphenylamine-based dyes for dye-sensitized solar cells. Dyes and Pigments, 2009, 81, 224-230.                                                                                                                                             | 2.0  | 82        |
| 8  | Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chemical Communications, 2021, 57, 302-314.                                                                 | 2.2  | 65        |
| 9  | Realizing Efficient Single Organic Molecular White Light-Emitting Diodes from Conformational<br>Isomerization of Quinazoline-Based Emitters. ACS Applied Materials & Interfaces, 2020, 12,<br>14233-14243.                                  | 4.0  | 60        |
| 10 | Phenylethyne-Bridged Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 13391-13397.                                                                                                                          | 1.5  | 58        |
| 11 | Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Applied Physics Letters, 2014, 104, .                                                                                 | 1.5  | 56        |
| 12 | Molecular Consideration for Small Molecular Acceptors Based on Ladderâ€Type Dipyran: Influences of<br>Oâ€Functionalization and Ï€â€Bridges. Advanced Functional Materials, 2018, 28, 1705927.                                               | 7.8  | 49        |
| 13 | Highâ€Performance Organic Nanoscale Photoswitches Based on Nanogap Electrodes Coated with a<br>Blend of Poly(3â€hexylthiophene) and [6,6]â€Phenylâ€C61â€butyric Acid Methyl Ester (P3HT:PCBM). Advanced<br>Materials, 2010, 22, 1645-1648.  | 11.1 | 48        |
| 14 | High-Performance Simple Nonfused Ring Electron Acceptors with Diphenylamino Flanking Groups. ACS<br>Applied Materials & Interfaces, 2021, 13, 39652-39659.                                                                                  | 4.0  | 47        |
| 15 | Conjugated polymers with broad absorption: Synthesis and application in polymer solar cells. Journal of Polymer Science Part A, 2010, 48, 2571-2578.                                                                                        | 2.5  | 46        |
| 16 | High efficiency small molecular acceptors based on novel O-functionalized ladder-type dipyran<br>building block. Nano Energy, 2018, 45, 10-20.                                                                                              | 8.2  | 45        |
| 17 | Siloleâ€containing polymers for highâ€efficiency polymer solar cells. Journal of Polymer Science Part A, 2011, 49, 4267-4274.                                                                                                               | 2.5  | 40        |
| 18 | Derivation of saddle shaped cyclooctatetrathiophene: increasing conjugation and fabricating pentamer. Tetrahedron, 2014, 70, 631-636.                                                                                                       | 1.0  | 40        |

JINSHENG SONG

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thiophene-Based Double Helices: Syntheses, X-ray Structures, and Chiroptical Properties. Journal of the American Chemical Society, 2016, 138, 10002-10010.                                        | 6.6 | 39        |
| 20 | Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells.<br>Journal of Materials Chemistry C, 2019, 7, 819-825.                                      | 2.7 | 37        |
| 21 | A highly sensitive and photo-stable fluorescent probe for endogenous intracellular H2O2 imaging in live cancer cells. Dyes and Pigments, 2018, 153, 61-66.                                        | 2.0 | 31        |
| 22 | Two-Dimensional Conjugated Polymer Based on sp <sup>2</sup> -Carbon Bridged Indacenodithiophene<br>for Efficient Polymer Solar Cells. Macromolecules, 2017, 50, 7984-7992.                        | 2.2 | 27        |
| 23 | Planar copolymers for high-efficiency polymer solar cells. Science China Chemistry, 2019, 62, 9-13.                                                                                               | 4.2 | 27        |
| 24 | Synthesis and Characterization of Cyclooctatetrathiophenes with Different Connection Sequences.<br>Journal of Organic Chemistry, 2014, 79, 2255-2262.                                             | 1.7 | 24        |
| 25 | Dibenzopyran-Based Wide Band Gap Conjugated Copolymers: Structural Design and Application for<br>Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 31348-31358.                   | 4.0 | 24        |
| 26 | Impact of the Bonding Sites at the Inner or Outer π-Bridged Positions for Non-Fullerene Acceptors.<br>ACS Applied Materials & Interfaces, 2019, 11, 19444-19451.                                  | 4.0 | 24        |
| 27 | Highly efficient copper-catalyzed hydroacylation reaction of aldehydes with azodicarboxylates.<br>Tetrahedron Letters, 2011, 52, 5880-5883.                                                       | 0.7 | 22        |
| 28 | Photovoltaic Performances of Fused Ring Acceptors with Isomerized Ladder-Type Dipyran Cores. ACS<br>Applied Materials & Interfaces, 2020, 12, 4887-4894.                                          | 4.0 | 20        |
| 29 | Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer, 2016, 82, 228-237.                                               | 1.8 | 19        |
| 30 | Hybrid Nonfused-Ring Electron Acceptors with Fullerene Pendant for High-Efficiency Organic Solar<br>Cells. ACS Applied Materials & Interfaces, 2021, 13, 1603-1611.                               | 4.0 | 19        |
| 31 | Analysis of 2D flow and heat transfer modeling in fracture of porous media. Journal of Thermal Science, 2017, 26, 331-338.                                                                        | 0.9 | 18        |
| 32 | Perylene diimide acceptor with two planar arms and a twisted core for high efficiency polymer solar cells. Dyes and Pigments, 2020, 175, 108186.                                                  | 2.0 | 17        |
| 33 | Small Molecules of Cyclopentadithiophene Derivatives: Effect of Sulfur Atom Position and<br>Substituted Groups on Their UV–Abs Properties. Journal of Physical Chemistry C, 2014, 118, 7844-7855. | 1.5 | 15        |
| 34 | Simple dithienosilole-based nonfused nonfullerene acceptor for efficient organic photovoltaics.<br>Dyes and Pigments, 2021, 184, 108789.                                                          | 2.0 | 14        |
| 35 | Insights into out-of-plane side chains effects on optoelectronic and photovoltaic properties of simple non-fused electron acceptors. Organic Electronics, 2021, 89, 106029.                       | 1.4 | 14        |
| 36 | Simple Tricyclic-Based A-ï€-D-ï€-A-Type Nonfullerene Acceptors for High-Efficiency Organic Solar Cells.<br>ACS Applied Materials & Interfaces, 2022, 14, 6039-6047.                               | 4.0 | 14        |

JINSHENG SONG

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | High efficiency ternary organic solar cells via morphology regulation with asymmetric nonfused ring electron acceptor. Chemical Engineering Journal, 2022, 438, 135384.                                                | 6.6 | 14        |
| 38 | Regulating molecular orientations of dipyran-based nonfullerene acceptors through side-chain<br>engineering at the π-bridge. Journal of Materials Chemistry A, 2020, 8, 22416-22422.                                   | 5.2 | 13        |
| 39 | Selectivity of Br/Li Exchange and Deprotonation of 4,4′-Dibromo-3,3′-bithiophene for Synthesis of<br>Symmetrical and Unsymmetrical Dithienoheteroaromatic Rings. Journal of Organic Chemistry, 2013, 78,<br>2726-2730. | 1.7 | 12        |
| 40 | Flexible–Rigid Synergetic Strategy for Saddle-Shaped Perylene Diimide Acceptors in As-Cast Polymer<br>Solar Cells. Journal of Physical Chemistry C, 2021, 125, 10841-10849.                                            | 1.5 | 12        |
| 41 | Silicon Spiro Double Helicene-like Compounds Based on Dithieno[2,3- <i>b</i> :3′,2′- <i>d</i> ]thiophene:<br>Syntheses and Crystal Structures. Journal of Organic Chemistry, 2015, 80, 11156-11161.                    | 1.7 | 11        |
| 42 | Random dithienosilole-based terpolymers: Synthesis and application in polymer solar cells. Dyes and Pigments, 2016, 130, 63-69.                                                                                        | 2.0 | 11        |
| 43 | Synthesis of Dendrimers Based on Tetrakis(thiophene-2-yl)ethene as New Dendron. Organic Letters, 2013, 15, 354-357.                                                                                                    | 2.4 | 9         |
| 44 | Novel dithienosilole-based conjugated copolymers and their application in bulk heterojunction solar cells. Polymer Chemistry, 2016, 7, 319-329.                                                                        | 1.9 | 9         |
| 45 | Facile Synthesis of the O-Functionalized Ladder-Type Dipyran Building Block and Its Application in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 13931-13940.                                     | 4.0 | 9         |
| 46 | Fused-ring acceptor with a spiro-bridged ladder-type core for organic solar cells. Dyes and Pigments, 2019, 163, 153-158.                                                                                              | 2.0 | 9         |
| 47 | Nonfullerene acceptors with an N-annulated perylene core and two perylene diimide units for efficient organic solar cells. Dyes and Pigments, 2020, 173, 107970.                                                       | 2.0 | 9         |
| 48 | Extended π-conjugated perylene diimide dimers toward efficient organic solar cells. Dyes and<br>Pigments, 2020, 183, 108736.                                                                                           | 2.0 | 9         |
| 49 | Planar Heptathienoacenes Based on Unsymmetric Dithieno[3,2- <i>b</i> :3′,4′-d]thiophene: Synthesis and<br>Photophysical Properties. Journal of Organic Chemistry, 2016, 81, 8612-8616.                                 | 1.7 | 8         |
| 50 | Efficient synthesis of dibenzopyran building block and its application in organic photovoltaics. Dyes and Pigments, 2015, 122, 184-191.                                                                                | 2.0 | 7         |
| 51 | Side chain engineering of dithienosilole-based polymers for application in polymer solar cells. Dyes and Pigments, 2016, 134, 480-486.                                                                                 | 2.0 | 7         |
| 52 | Naphthotetrathiophene-Based Helicene-Like Molecules: Synthesis and Photophysical Properties.<br>Journal of Organic Chemistry, 2016, 81, 4856-4860.                                                                     | 1.7 | 5         |
| 53 | Bright red fluorescent conjugated polymer nanoparticles with dibenzopyran as electron donor for cell imaging. Analytical Methods, 2017, 9, 3255-3259.                                                                  | 1.3 | 5         |
| 54 | Coupling mechanism between photogenerated carriers and triboelectric charges and photoinduced reinforcement of a triboelectric nanogenerator. Applied Physics Letters, 2021, 119, .                                    | 1.5 | 5         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and molecular properties of butterfly-shaped tetrathiophene derivatives. Tetrahedron, 2015, 71, 1838-1843.                                                                                       | 1.0 | 4         |
| 56 | Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in<br>Simple Poly(3â€pentylthiophene) Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200229. | 2.0 | 4         |
| 57 | Synthesis of Saddle-Shaped Cyclooctatetrathiophene-Triazine Derivatives and Their Aggregation<br>Induced Emissions (AIE) Properties. Chinese Journal of Organic Chemistry, 2018, 38, 1119.                 | 0.6 | 3         |
| 58 | Using fullerene as the third component to boosting the photovoltaic performances of pyran acceptor. Dyes and Pigments, 2022, 197, 109933.                                                                  | 2.0 | 2         |
| 59 | Donor Materials for Organic Solar Cell (OSC). , 2014, , 53-96.                                                                                                                                             |     | 1         |
| 60 | Integration of New Organic Electro-Optic Materials into Silicon and Silicon Nitride Photonics and into Metamaterial and Plasmonic Device Structures. , 2011, , .                                           |     | 0         |