
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2023250/publications.pdf Version: 2024-02-01

HONCLUC

#	Article	IF	CITATIONS
1	Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco. Gene, 2022, 809, 146017.	1.0	14
2	CgbZIP1: A bZIP Transcription Factor from Chrysanthemum Grandiflora Confers Plant Tolerance to Salinity and Drought Stress. Agronomy, 2022, 12, 556.	1.3	5
3	MiR396â€ <i>GRF</i> module associates with switchgrass biomass yield and feedstock quality. Plant Biotechnology Journal, 2021, 19, 1523-1536.	4.1	35
4	A chloroplast heat shock protein modulates growth and abiotic stress response in creeping bentgrass. Plant, Cell and Environment, 2021, 44, 1769-1787.	2.8	16
5	A conservative pathway for coordination of cell wall biosynthesis and cell cycle progression in plants. Plant Journal, 2021, 106, 630-648.	2.8	8
6	MiR396 is involved in plant response to vernalization and flower development in Agrostis stolonifera. Horticulture Research, 2020, 7, 173.	2.9	21
7	Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). BMC Genomics, 2020, 21, 131.	1.2	26
8	AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC Plant Biology, 2020, 20, 184.	1.6	27
9	Biolistic DNA Delivery in Turfgrass Embryonic Callus Initiated from Mature Seeds. Methods in Molecular Biology, 2020, 2124, 251-261.	0.4	0
10	Transgenic creeping bentgrass overexpressing <i>Osaâ€miR393a</i> exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnology Journal, 2019, 17, 233-251.	4.1	75
11	MiR319 mediated salt tolerance by ethylene. Plant Biotechnology Journal, 2019, 17, 2370-2383.	4.1	64
12	MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Horticulture Research, 2019, 6, 48.	2.9	64
13	DRMY1, a Myb-Like Protein, Regulates Cell Expansion and Seed Production in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 285-302.	1.5	15
14	STRESS INDUCED FACTOR 2, a Leucine-Rich Repeat Kinase Regulates Basal Plant Pathogen Defense. Plant Physiology, 2018, 176, 3062-3080.	2.3	49
15	Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics, 2018, 19, 224.	1.2	78
16	Genome-wide identification and characterization of LRR-RLKs reveal functional conservation of the SIF subfamily in cotton (Gossypium hirsutum). BMC Plant Biology, 2018, 18, 185.	1.6	28
17	Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Plant Biotechnology Journal, 2017, 15, 433-446.	4.1	66
18	Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions. Plant and Cell Physiology, 2017, 58, 735-746.	1.5	86

#	Article	IF	CITATIONS
19	Negative Regulators of Messenger RNA and the Role of microRNA for Plant Genetic Engineering. , 2016, , 237-255.		0
20	Development of Molecular Strategies for Gene Containment and Marker-Free Genetically Modified Organisms. , 2016, , 223-236.		1
21	AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABAâ€dependent and independent signalling to attenuate plant response to abiotic stress. Plant, Cell and Environment, 2016, 39, 1320-1337.	2.8	82
22	Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Scientific Reports, 2016, 6, 28791.	1.6	29
23	Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Scientific Reports, 2016, 6, 37645.	1.6	118
24	SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley. Scientific Reports, 2016, 6, 31741.	1.6	29
25	Expression of the shrimp antimicrobial peptide penaeidin 4-1 confers resistance against brown patch disease in tall fescue. Plant Cell, Tissue and Organ Culture, 2016, 125, 599-603.	1.2	5
26	Constitutive Expression of Rice <i>MicroRNA528</i> Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass. Plant Physiology, 2015, 169, 576-593.	2.3	136
27	Adventitious shoot regeneration from in vitro cultured leaf explants of peach rootstock Guardian® is significantly enhanced by silver thiosulfate. Plant Cell, Tissue and Organ Culture, 2015, 120, 757-765.	1.2	17
28	Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signaling and Behavior, 2014, 9, e28700.	1.2	59
29	MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Molecular Biology, 2013, 83, 59-75.	2.0	118
30	Heterologous expression of Os <scp>SIZ</scp> 1, a rice <scp>SUMO E</scp> 3 ligase, enhances broad abiotic stress tolerance in transgenic creeping bentgrass. Plant Biotechnology Journal, 2013, 11, 432-445.	4.1	79
31	Constitutive Expression of a <i>miR319</i> Gene Alters Plant Development and Enhances Salt and Drought Tolerance in Transgenic Creeping Bentgrass. Plant Physiology, 2013, 161, 1375-1391.	2.3	378
32	Predicting protein sumoylation sites from sequence features. Amino Acids, 2012, 43, 447-455.	1.2	42
33	Manipulating Expression of Tonoplast Transporters. , 2012, 913, 359-369.		0
34	Expression of a Novel Antimicrobial Peptide Penaeidin4-1 in Creeping Bentgrass (Agrostis stolonifera) Tj ETQq0) 0 0 1gBT /(Overlock 10 T
35	New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits. BMC Genomics, 2011, 12, 369.	1.2	15

36 Genomic tools development for Aquilegia: construction of a BAC-based physical map. BMC Genomics, 1.2 13 2010, 11, 621.

#	Article	IF	CITATIONS
37	Heterologous expression of <i>Arabidopsis</i> H ⁺ â€pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (<i>Agrostis stolonifera</i> L.). Plant, Cell and Environment, 2010, 33, 272-289.	2.8	158
38	Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small, 2009, 5, 1128-1132.	5.2	478
39	Nitrogen and Plant Growth Regulator Influence on â€ [~] Champion' Bermudagrass Putting Green under Reduced Sunlight. Agronomy Journal, 2009, 101, 75-81.	0.9	24
40	Impacts of Altered Light Spectral Quality on Warm Season Turfgrass Growth under Greenhouse Conditions. Crop Science, 2009, 49, 1444-1453.	0.8	32
41	FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnology Journal, 2008, 6, 176-188.	4.1	31
42	Winter Foot and Equipment Traffic Impacts on a â€~L93' Creeping Bentgrass Putting Green. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 922-926.	0.5	5
43	Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theoretical and Applied Genetics, 2007, 115, 571-590.	1.8	194
44	Enhancing Turfgrass Nitrogen Use under Stresses. Books in Soils, Plants, and the Environment, 2007, , 557-601.	0.1	2
45	RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Molecular Biology, 2006, 62, 397-408.	2.0	79
46	FLP-mediated site-specific recombination for genome modification in turfgrass. Biotechnology Letters, 2006, 28, 1793-1804.	1.1	12
47	Turf Grasses. , 2006, 344, 83-95.		4
48	Controlling Transgene Escape in GM Creeping Bentgrass. Molecular Breeding, 2005, 16, 185-188.	1.0	32
49	Controlling Transgene Escape in Genetically Modified Grasses. , 2004, , 245-254.		6
50	Transient reporter gene (GUS) expression in creeping bentgrass (Agrostis palustris) is affected by in vivo nucleolytic activity. Biotechnology Letters, 2003, 25, 939-944.	1.1	4
51	Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Science, 2003, 165, 497-506.	1.7	41
52	Promoter analysis in transient assays using a GUS reporter gene construct in creeping bentgrass (Agrostis palustris). Journal of Plant Physiology, 2003, 160, 1233-1239.	1.6	19
53	Application of FLP/FRT Site-Specific DNA Recombination System in Plants. , 2002, 24, 1-16.		15
54	FLP-mediated recombination for use in hybrid plant production. Plant Journal, 2000, 23, 423-430.	2.8	66

#	Article	IF	CITATIONS
55	The Two Major Types of Plant Plasma Membrane H+-ATPases Show Different Enzymatic Properties and Confer Differential pH Sensitivity of Yeast Growth1. Plant Physiology, 1999, 119, 627-634.	2.3	52
56	Variant mitochondrial transcripts of a broad bean line are associated with two point mutations located upstream of the nad5 exon c. Plant Science, 1997, 129, 203-212.	1.7	4
57	Mitochondrial DNA polymorphism and phylogenetic relationships inHevea brasiliensis. Molecular Breeding, 1995, 1, 51-63.	1.0	62