Judy L Bolton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2022733/publications.pdf Version: 2024-02-01

		57758	56724
108	7,214	44	83
papers	citations	h-index	g-index
111	111	111	6745
all docs	docs citations	times ranked	citing authors

LUDY L ROLTON

#	Article	IF	CITATIONS
1	Role of Quinones in Toxicology. Chemical Research in Toxicology, 2000, 13, 135-160.	3.3	1,456
2	Evaluation of Estrogenic Activity of Plant Extracts for the Potential Treatment of Menopausal Symptoms. Journal of Agricultural and Food Chemistry, 2001, 49, 2472-2479.	5.2	382
3	Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chemical Research in Toxicology, 2017, 30, 13-37.	3.3	285
4	Potential Mechanisms of Estrogen Quinone Carcinogenesis. Chemical Research in Toxicology, 2008, 21, 93-101.	3.3	214
5	Role of Quinoids in Estrogen Carcinogenesis. Chemical Research in Toxicology, 1998, 11, 1113-1127.	3.3	187
6	Xanthohumol Isolated from Humulus lupulus Inhibits Menadione-Induced DNA Damage through Induction of Quinone Reductase. Chemical Research in Toxicology, 2005, 18, 1296-1305.	3.3	183
7	Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms. Menopause, 2009, 16, 1156-1166.	2.0	159
8	Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacological Reviews, 2016, 68, 1026-1073.	16.0	133
9	Serotonergic Activity-Guided Phytochemical Investigation of the Roots of Angelica sinensis. Journal of Natural Products, 2006, 69, 536-541.	3.0	127
10	Evidence That 4-Allyl-o-quinones Spontaneously Rearrange to Their More Electrophilic Quinone Methides: Potential Bioactivation Mechanism for the Hepatocarcinogen Safrole. Chemical Research in Toxicology, 1994, 7, 443-450.	3.3	121
11	Estrogens and Congeners from Spent Hops (Humuluslupulus). Journal of Natural Products, 2004, 67, 2024-2032.	3.0	116
12	Comparison of the in Vitro Estrogenic Activities of Compounds from Hops (Humulus lupulus) and Red Clover (Trifolium pratense). Journal of Agricultural and Food Chemistry, 2005, 53, 6246-6253.	5.2	112
13	4-Hydroxylated Metabolites of the Antiestrogens Tamoxifen and Toremifene Are Metabolized to Unusually Stable Quinone Methides. Chemical Research in Toxicology, 2000, 13, 45-52.	3.3	106
14	Quinoids, quinoid radicals, and phenoxyl radicals formed from estrogens and antiestrogens. Toxicology, 2002, 177, 55-65.	4.2	100
15	The Major Metabolite of Equilin, 4-Hydroxyequilin, Autoxidizes to ano-Quinone Which Isomerizes to the Potent Cytotoxin 4-Hydroxyequilenin-o-quinone. Chemical Research in Toxicology, 1999, 12, 204-213.	3.3	97
16	Bioactivation of Estrone and Its Catechol Metabolites to Quinoidâ^'Glutathione Conjugates in Rat Liver Microsomes. Chemical Research in Toxicology, 1996, 9, 492-499.	3.3	91
17	Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Molecular Nutrition and Food Research, 2014, 58, 1962-1969.	3.3	89
18	Black Cohosh (Cimicifuga racemosa L.) Protects against Menadione-Induced DNA Damage through Scavenging of Reactive Oxygen Species:  Bioassay-Directed Isolation and Characterization of Active Principles. Journal of Agricultural and Food Chemistry, 2002, 50, 7022-7028.	5.2	87

#	Article	IF	CITATIONS
19	The Chemical and Biologic Profile of a Red Clover (Trifolium pratense L.) Phase II Clinical Extract. Journal of Alternative and Complementary Medicine, 2006, 12, 133-139.	2.1	85
20	Synthesis and Reactivity of a Potential Carcinogenic Metabolite of Tamoxifen: 3,4-Dihydroxytamoxifen-o-quinone. Chemical Research in Toxicology, 2000, 13, 53-62.	3.3	82
21	Equine Estrogen Metabolite 4-Hydroxyequilenin Induces DNA Damage in the Rat Mammary Tissues:Â Formation of Single-Strand Breaks, Apurinic Sites, Stable Adducts, and Oxidized Bases. Chemical Research in Toxicology, 2001, 14, 1654-1659.	3.3	82
22	A Metabolite of Equine Estrogens, 4-Hydroxyequilenin, Induces DNA Damage and Apoptosis in Breast Cancer Cell Lines. Chemical Research in Toxicology, 2000, 13, 342-350.	3.3	81
23	In Vitro Serotonergic Activity of Black Cohosh and Identification of <i>N</i> _{ï‰} -Methylserotonin as a Potential Active Constituent. Journal of Agricultural and Food Chemistry, 2008, 56, 11718-11726.	5.2	79
24	Comparison of negative and positive ion electrospray tandem mass spectrometry for the liquid chromatography tandem mass spectrometry analysis of oxidized deoxynucleosides. Journal of the American Society for Mass Spectrometry, 2001, 12, 80-87.	2.8	78
25	In vivo estrogenic comparisons of Trifolium pratense (red clover) Humulus lupulus (hops), and the pure compounds isoxanthohumol and 8-prenylnaringenin. Chemico-Biological Interactions, 2008, 176, 30-39.	4.0	78
26	Alkylation of 2â€~-Deoxynucleosides and DNA by the Premarin Metabolite 4-Hydroxyequilenin Semiquinone Radical. Chemical Research in Toxicology, 1998, 11, 94-101.	3.3	76
27	Evaluation of Estrogenic Activity of Licorice Species in Comparison with Hops Used in Botanicals for Menopausal Symptoms. PLoS ONE, 2013, 8, e67947.	2.5	75
28	Identification of Novel Electrophilic Metabolites of Piper methysticum Forst. (Kava). Chemical Research in Toxicology, 2003, 16, 733-740.	3.3	70
29	Alkylation of 2â€~-Deoxynucleosides and DNA by Quinone Methides Derived from 2,6-Di-tert-butyl-4-methylphenol. Chemical Research in Toxicology, 1996, 9, 1368-1374.	3.3	69
30	Trifolium pratense (Red Clover) Exhibits Estrogenic Effects In Vivo in Ovariectomized Sprague-Dawley Rats. Journal of Nutrition, 2002, 132, 27-30.	2.9	69
31	Bioactivation of the Selective Estrogen Receptor Modulator Desmethylated Arzoxifene to Quinoids:Â 4â€~-Fluoro Substitution Prevents Quinoid Formation. Chemical Research in Toxicology, 2005, 18, 162-173.	3.3	69
32	The Equine Estrogen Metabolite 4-Hydroxyequilenin Causes DNA Single-Strand Breaks and Oxidation of DNA Bases in Vitro. Chemical Research in Toxicology, 1998, 11, 1105-1111.	3.3	66
33	The Influence of the p-Alkyl Substituent on the Isomerization of o-Quinones to p-Quinone Methides: Potential Bioactivation Mechanism for Catechols. Chemical Research in Toxicology, 1995, 8, 537-544.	3.3	65
34	<i>Angelica sinensis</i> and Its Alkylphthalides Induce the Detoxification Enzyme NAD(P)H: Quinone Oxidoreductase 1 by Alkylating Keap1. Chemical Research in Toxicology, 2008, 21, 1939-1948.	3.3	65
35	Quinone Methide Bioactivation Pathway: Contribution to Toxicity and/or Cytoprotection?. Current Organic Chemistry, 2014, 18, 61-69.	1.6	64
36	Covalent Modification of Proteins and Peptides by the Quinone Methide from 2-tert-Butyl-4,6-dimethylphenol:Â Selectivity and Reactivity with Respect to Competitive Hydration. Journal of Organic Chemistry, 1997, 62, 1820-1825.	3.2	63

#	Article	IF	CITATIONS
37	p-Quinone methides are the major decomposition products of catechol estrogen o-quinones. Carcinogenesis, 1996, 17, 925-929.	2.8	62
38	Bioactivation of Selective Estrogen Receptor Modulators (SERMs). Chemical Research in Toxicology, 2006, 19, 1125-1137.	3.3	61
39	The Multiple Biological Targets of Hops and Bioactive Compounds. Chemical Research in Toxicology, 2019, 32, 222-233.	3.3	60
40	Botanical Modulation of Menopausal Symptoms: Mechanisms of Action?. Planta Medica, 2013, 79, 538-553.	1.3	58
41	The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended π-conjugation dramatically stabilizes the quinone methide formed from eugenol. Chemico-Biological Interactions, 1995, 95, 279-290.	4.0	56
42	Screening Method for the Discovery of Potential Cancer Chemoprevention Agents Based on Mass Spectrometric Detection of Alkylated Keap1. Analytical Chemistry, 2005, 77, 6407-6414.	6.5	56
43	Inhibition of Glutathione S-Transferase Activity by the Quinoid Metabolites of Equine Estrogens. Chemical Research in Toxicology, 1998, 11, 758-765.	3.3	54
44	Formation and biological targets of botanical o-quinones. Food and Chemical Toxicology, 2018, 120, 700-707.	3.6	47
45	Dynamic Residual Complexity of the Isoliquiritigenin–Liquiritigenin Interconversion During Bioassay. Journal of Agricultural and Food Chemistry, 2013, 61, 2146-2157.	5.2	46
46	Relationship Between the Metabolism of Butylated Hydroxytoluene (BHT) and Lung Tumor Promotion in Mice. Experimental Lung Research, 1991, 17, 439-453.	1.2	45
47	Reaction of the Premarin Metabolite 4-Hydroxyequilenin Semiquinone Radical with 2â€~-Deoxyguanosine: Formation of Unusual Cyclic Adducts. Journal of the American Chemical Society, 1997, 119, 11126-11127.	13.7	43
48	Redox Cycling of Catechol Estrogens Generating Apurinic/Apyrimidinic Sites and 8-oxo-Deoxyguanosine via Reactive Oxygen Species Differentiates Equine and Human Estrogens. Chemical Research in Toxicology, 2010, 23, 1365-1373.	3.3	42
49	Evidence That a Metabolite of Equine Estrogens, 4-Hydroxyequilenin, Induces Cellular Transformation in Vitro. Chemical Research in Toxicology, 2001, 14, 82-90.	3.3	40
50	Hop (<i>Humulus lupulus</i> L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation. Chemical Research in Toxicology, 2016, 29, 1142-1150.	3.3	40
51	Hops (<i>Humulus lupulus</i>) Inhibits Oxidative Estrogen Metabolism and Estrogen-Induced Malignant Transformation in Human Mammary Epithelial cells (MCF-10A). Cancer Prevention Research, 2012, 5, 73-81.	1.5	39
52	Structural and Functional Consequences of Inactivation of Human GlutathioneS-Transferase P1-1 Mediated by the Catechol Metabolite of Equine Estrogens, 4-Hydroxyequileninâ€. Biochemistry, 2001, 40, 4811-4820.	2.5	38
53	Bioactivation of the Selective Estrogen Receptor Modulator Acolbifene to Quinone Methides. Chemical Research in Toxicology, 2005, 18, 174-182.	3.3	38
54	Synthesis and Reactivity of Potential Toxic Metabolites of Tamoxifen Analogues:Â Droloxifene and Toremifeneo-Quinones. Chemical Research in Toxicology, 2001, 14, 1643-1653.	3.3	36

#	Article	IF	CITATIONS
55	Structure–Activity Relationships for a Family of Benzothiophene Selective Estrogen Receptor Modulators Including Raloxifene and Arzoxifene. ChemMedChem, 2007, 2, 1520-1526.	3.2	36
56	Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (<i><scp>H</scp>umulus lupulus</i>) in vitro and in vivo. Molecular Nutrition and Food Research, 2013, 57, 1055-1066.	3.3	36
57	Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation. Chemico-Biological Interactions, 1997, 104, 11-27.	4.0	33
58	Antiestrogenic and DNA Damaging Effects Induced by Tamoxifen and Toremifene Metabolites. Chemical Research in Toxicology, 2003, 16, 832-837.	3.3	33
59	Metabolism of Equilenin in MCF-7 and MDA-MB-231 Human Breast Cancer Cells. Chemical Research in Toxicology, 2001, 14, 572-581.	3.3	32
60	Screening Botanical Extracts for Quinoid Metabolites. Chemical Research in Toxicology, 2001, 14, 1546-1551.	3.3	31
61	Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women's Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chemical Research in Toxicology, 2015, 28, 2130-2141.	3.3	30
62	Estrogen Receptor α Enhances the Rate of Oxidative DNA Damage by Targeting an Equine Estrogen Catechol Metabolite to the Nucleus. Journal of Biological Chemistry, 2009, 284, 8633-8642.	3.4	29
63	Biological reactive intermediates (BRIs) formed from botanical dietary supplements. Chemico-Biological Interactions, 2011, 192, 72-80.	4.0	28
64	Integrated standardization concept for Angelica botanicals using quantitative NMR. Fìtoterapìâ, 2012, 83, 18-32.	2.2	28
65	Quinoids Formed from Estrogens and Antiestrogens. Methods in Enzymology, 2004, 378, 110-123.	1.0	27
66	Problematic Detoxification of Estrogen Quinones by NAD(P)H-Dependent Quinone Oxidoreductase and Glutathione-S-transferase. Chemical Research in Toxicology, 2008, 21, 1324-1329.	3.3	27
67	Biological and chemical standardization of a hop (<i>Humulus lupulus</i>) botanical dietary supplement. Biomedical Chromatography, 2014, 28, 729-734.	1.7	27
68	Structural modulation of reactivity/activity in design of improved benzothiophene selective estrogen receptor modulators: induction of chemopreventive mechanisms. Molecular Cancer Therapeutics, 2007, 6, 2418-2428.	4.1	26
69	The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells. Chemico-Biological Interactions, 1997, 106, 133-148.	4.0	25
70	Catechol Estrogen 4-Hydroxyequilenin Is a Substrate and an Inhibitor of Catechol-O-Methyltransferase. Chemical Research in Toxicology, 2003, 16, 668-675.	3.3	25
71	Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It. Chemical Research in Toxicology, 2015, 28, 1584-1594.	3.3	25
72	Chemical Modification Modulates Estrogenic Activity, Oxidative Reactivity, and Metabolic Stability in 4†F-DMA, a New Benzothiophene Selective Estrogen Receptor Modulator. Chemical Research in Toxicology, 2006, 19, 779-787.	3.3	24

#	Article	IF	CITATIONS
73	DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women's Health. Journal of Natural Products, 2017, 80, 2284-2294.	3.0	24
74	A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. Phytomedicine, 2017, 34, 50-58.	5.3	24
75	The University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research for Women's Health: from plant to clinical use. American Journal of Clinical Nutrition, 2008, 87, 504S-508S.	4.7	23
76	Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism. Chemical Research in Toxicology, 2017, 30, 2084-2092.	3.3	23
77	SAR Study on Estrogen Receptor α/β Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. Journal of Agricultural and Food Chemistry, 2020, 68, 10651-10663.	5.2	23
78	Inhibition of Cellular Enzymes by Equine Catechol Estrogens in Human Breast Cancer Cells:  Specificity for Glutathione S-Transferase P1-1. Chemical Research in Toxicology, 2002, 15, 935-942.	3.3	21
79	Equine estrogen metabolite 4-hydroxyequilenin induces anchorage-independent growth of human mammary epithelial MCF-10A cells: differential gene expression. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 550, 109-121.	1.0	21
80	Screening for Xenobiotic Electrophilic Metabolites Using Pulsed Ultrafiltration-Mass Spectrometry. Combinatorial Chemistry and High Throughput Screening, 1999, 2, 165-175.	1.1	21
81	Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an ERβ Agonist from <i>Clycyrrhiza inflata</i> and Highlights the Importance of Chemical and Biological Authentication. Journal of Natural Products, 2018, 81, 966-975.	3.0	20
82	Mechanism of Isomerization of 4-Propyl-o-quinone to Its Tautomeric p-Quinone Methide. Chemical Research in Toxicology, 1996, 9, 109-113.	3.3	19
83	Nitrosation, Nitration, and Autoxidation of the Selective Estrogen Receptor Modulator Raloxifene by Nitric Oxide, Peroxynitrite, and Reactive Nitrogen/Oxygen Species. Chemical Research in Toxicology, 2003, 16, 1264-1276.	3.3	19
84	Botanical Dietary Supplements Gone Bad. Chemical Research in Toxicology, 2007, 20, 586-590.	3.3	19
85	Menopausal Hormone Therapy, Age, and Chronic Diseases: Perspectives on Statistical Trends. Chemical Research in Toxicology, 2016, 29, 1583-1590.	3.3	18
86	Reaction of quinone methides with proteins: Analysis of myoglobin adduct formation by electrospray mass spectrometry. Biological Mass Spectrometry, 1993, 22, 666-668.	0.5	16
87	Characterization of two new variants of human catechol O-methyltransferase in vitro. Cancer Letters, 2005, 230, 81-89.	7.2	16
88	Equine Catechol Estrogen 4-Hydroxyequilenin Is a More Potent Inhibitor of the Variant Form of Catechol-O-Methyltransferase. Chemical Research in Toxicology, 2004, 17, 512-520.	3.3	15
89	Structural Modulation of Oxidative Metabolism in Design of Improved Benzothiophene Selective Estrogen Receptor Modulators. Drug Metabolism and Disposition, 2009, 37, 161-169.	3.3	15
90	Altered apoptotic response in MCF 10A cells treated with the equine estrogen metabolite, 4-hydroxyequilenin. Toxicology Letters, 2004, 154, 225-233.	0.8	13

#	Article	IF	CITATIONS
91	Evidence for Chemopreventive and Resilience Activity of Licorice: <i>Glycyrrhiza Glabra</i> and G. <i>Inflata</i> Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prevention Research, 2018, 11, 819-830.	1.5	12
92	Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women. Journal of Agricultural and Food Chemistry, 2020, 68, 5212-5220.	5.2	12
93	Quinoids as Reactive Intermediates in Estrogen Carcinogenesis. Advances in Experimental Medicine and Biology, 2001, 500, 497-507.	1.6	12
94	Evidence-Based Herbal Medicine: Challenges in Efficacy and Safety Assessments. Annals of Traditional Chinese Medicine, 2006, , 11-26.	0.1	11
95	Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 234-241.	2.5	11
96	Determination of Absolute Configurations of 4-Hydroxyequilenin-Cytosine and -Adenine Adducts by Optical Rotatory Dispersion, Electronic Circular Dichroism, Density Functional Theory Calculations, and Mass Spectrometry. Chemical Research in Toxicology, 2008, 21, 1739-1748.	3.3	9
97	NMR and Computational Studies of Stereoisomeric Equine Estrogen-Derived DNA Cytidine Adducts in Oligonucleotide Duplexes: Opposite Orientations of Diastereomeric Forms. Biochemistry, 2009, 48, 7098-7109.	2.5	9
98	Modulation of estrogen chemical carcinogenesis by botanical supplements used for postmenopausal women's health. Drug Discovery Today Disease Mechanisms, 2012, 9, e47-e54.	0.8	9
99	Functional and structural comparisons of cysteine residues in the Val108 wild type and Met108 variant of human soluble catechol O-methyltransferase. Chemico-Biological Interactions, 2005, 152, 151-163.	4.0	7
100	The naphthol selective estrogen receptor modulator (SERM), LY2066948, is oxidized to an o-quinone analogous to the naphthol equine estrogen, equilenin. Chemico-Biological Interactions, 2012, 196, 1-10.	4.0	6
101	No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. Journal of Agricultural and Food Chemistry, 2020, 68, 13929-13939.	5.2	5
102	6-Prenylnaringenin from Hops Disrupts ERα-Mediated Downregulation of <i>CYP1A1</i> to Facilitate Estrogen Detoxification. Chemical Research in Toxicology, 2020, 33, 2793-2803.	3.3	4
103	Botanical Integrity: Part 2: Traditional and Modern Analytical Approaches. HerbalGram, 2016, 109, 60-64.	0.0	3
104	Chapter 1 Bioactivation of Estrogens to Toxic Quinones. Advances in Molecular Toxicology, 2006, , 1-23.	0.4	2
105	Response of human mammary epithelial cells to DNA damage induced by 4-hydroxyequilenin: Lack of p53-mediated G1 arrest. Chemico-Biological Interactions, 2006, 161, 271-278.	4.0	2
106	Formation and Reactions of Xenobiotic Quinone Methides in Biology. , 0, , 329-356.		1
107	Mechanisms of Estrogen Carcinogenesis: Modulation by Botanical Natural Products. , 2011, , 75-93.		1
108	Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HerbalGram, 2015, 106, 58-60.	0.0	1