Eni Oko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2022521/publications.pdf Version: 2024-02-01

ΕΝΙ Οκο

#	Article	IF	CITATIONS
1	Process analysis of intensified absorber for post-combustion CO2 capture through modelling and simulation. International Journal of Greenhouse Gas Control, 2014, 21, 91-100.	2.3	68
2	Simulation-based techno-economic evaluation for optimal design of CO 2 transport pipeline network. Applied Energy, 2014, 132, 610-620.	5.1	63
3	Dynamic modelling, validation and analysis of coal-fired subcritical power plant. Fuel, 2014, 135, 292-300.	3.4	63
4	Modelling of a post-combustion CO2 capture process using neural networks. Fuel, 2015, 151, 156-163.	3.4	57
5	Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation. Fuel, 2019, 236, 135-146.	3.4	57
6	Current status and future development of solvent-based carbon capture. International Journal of Coal Science and Technology, 2017, 4, 5-14.	2.7	53
7	Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture. Energy, 2019, 166, 1074-1088.	4.5	51
8	Modelling of a post-combustion CO2 capture process using deep belief network. Applied Thermal Engineering, 2018, 130, 997-1003.	3.0	50
9	Process modelling and analysis of intensified CO2 capture using monoethanolamine (MEA) in rotating packed bed absorber. Journal of Cleaner Production, 2018, 204, 1124-1142.	4.6	45
10	Neural network approach for predicting drum pressure and level in coal-fired subcritical power plant. Fuel, 2015, 151, 139-145.	3.4	40
11	Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology. Applied Energy, 2017, 203, 11-25.	5.1	37
12	Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation. Applied Energy, 2021, 292, 116893.	5.1	31
13	Process modelling, validation and analysis of rotating packed bed stripper in the context of intensified CO2 capture with MEA. Journal of Industrial and Engineering Chemistry, 2019, 75, 285-295.	2.9	30
14	Model-free adaptive control for MEA-based post-combustion carbon capture processes. Fuel, 2018, 224, 637-643.	3.4	24
15	Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control. International Journal of Greenhouse Gas Control, 2020, 95, 102985.	2.3	21
16	Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO 2 capture process. Applied Energy, 2018, 223, 302-316.	5.1	19
17	Process analysis and economic evaluation of mixed aqueous ionic liquid and monoethanolamine (MEA) solvent for CO ₂ capture from a coke oven plant. , 2018, 8, 686-700.		18
18	Non-linear system identification of solvent-based post-combustion CO2 capture process. Fuel, 2019, 239, 1213-1223.	3.4	17

Ενι Οκο

#	Article	IF	CITATIONS
19	Process simulation and analysis of carbon capture with an aqueous mixture of ionic liquid and monoethanolamine solvent. International Journal of Coal Science and Technology, 2017, 4, 25-32.	2.7	15
20	Special issue on carbon capture in the context of carbon capture, utilisation and storage (CCUS). International Journal of Coal Science and Technology, 2017, 4, 1-4.	2.7	15
21	Nonlinear model predictive control (NMPC) of the solvent-based post-combustion CO2 capture process. Energy, 2020, 213, 118840.	4.5	13
22	Study of the impacts of supplements on the specific methane production during anaerobic digestion of the West African Gamba and Guinea Grass. Fuel, 2021, 285, 119060.	3.4	12
23	Case study on CO ₂ transport pipeline network design for Humber region in the UK. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2014, 228, 210-225.	1.4	11
24	Modelling of a post-combustion CO2 capture process using extreme learning machine. International Journal of Coal Science and Technology, 2017, 4, 33-40.	2.7	11
25	A new method for scale-up of solvent-based post-combustion carbon capture process with packed columns. International Journal of Greenhouse Gas Control, 2020, 93, 102900.	2.3	11
26	Modelling of a Post-combustion CO2 Capture Process Using Bootstrap Aggregated Extreme Learning Machines. Computer Aided Chemical Engineering, 2016, , 2007-2012.	0.3	10
27	Simplification of detailed rate-based model of post-combustion CO2 capture for full chain CCS integration studies. Fuel, 2015, 142, 87-93.	3.4	9
28	Study of mass transfer correlations for rotating packed bed columns in the context of solvent-based carbon capture. International Journal of Greenhouse Gas Control, 2019, 91, 102831.	2.3	9
29	Study of absorber intercooling in solvent-based CO 2 capture based on rotating packed bed technology. Energy Procedia, 2017, 142, 3511-3516.	1.8	7
30	Process Simulation and Analysis for CO2 Transport Pipeline Design and Operation – Case Study for the Humber Region in the UK. Computer Aided Chemical Engineering, 2014, , 1633-1638.	0.3	6
31	Novel low-cost pre-treatment material for enhancing the methane yield during anaerobic digestion of lignocellulosic biomass feedstocks: Experimental and kinetic study. Renewable Energy, 2021, 179, 584-592.	4.3	6
32	Study of Mass Transfer Correlations for Intensified Absorbers in Post-combustion CO2 Capture Based on Chemical Absorption. Energy Procedia, 2017, 114, 1630-1636.	1.8	5
33	Dynamic Modelling and Analysis of Supercritical Coal-Fired Power Plant Integrated with Post-combustion CO2 Capture. , 2016, , 359-363.		3
34	Modelling of a post-combustion CO <inf>2</inf> capture process using extreme learning machine. , 2016, , .		2
35	Experimental study of CO2 solubility in high concentration MEA solution for intensified solvent-based carbon capture. MATEC Web of Conferences, 2019, 272, 01004.	0.1	1
36	Technical and Economic Analysis of Ionic Liquid-Based Post-combustion CO2 Capture Process. Green Energy and Technology, 2018, , 1393-1411.	0.4	1

#	Article	IF	CITATIONS
37	12 Carbon Capture. Green Chemistry and Chemical Engineering, 2017, , 457-632.	0.0	1