Choong Eui Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2022520/publications.pdf Version: 2024-02-01

CHOONG FULSONG

#	Article	IF	CITATIONS
1	Supported Chiral Catalysts on Inorganic Materials. Chemical Reviews, 2002, 102, 3495-3524.	47.7	644
2	Enantioselective chemo- and bio-catalysis in ionic liquids. Chemical Communications, 2004, , 1033.	4.1	280
3	Practical method to recycle a chiral (salen)Mn epoxidation catalyst by using an ionic liquid. Chemical Communications, 2000, , 837-838.	4.1	246
4	New Method of Fluorination Using Potassium Fluoride in Ionic Liquid:  Significantly Enhanced Reactivity of Fluoride and Improved Selectivity. Journal of the American Chemical Society, 2002, 124, 10278-10279.	13.7	242
5	Imidazolium Ion-Terminated Self-Assembled Monolayers on Au:Â Effects of Counteranions on Surface Wettability. Journal of the American Chemical Society, 2004, 126, 480-481.	13.7	240
6	Scandium(iii) triflate immobilised in ionic liquids: a novel and recyclable catalytic system for Friedel–Crafts alkylation of aromatic compounds with alkenes. Chemical Communications, 2000, , 1695-1696.	4.1	209
7	Toward Understanding the Origin of Positive Effects of Ionic Liquids on Catalysis: Formation of More Reactive Catalysts and Stabilization of Reactive Intermediates and Transition States in Ionic Liquids. Accounts of Chemical Research, 2010, 43, 985-994.	15.6	184
8	Dramatic Enhancement of Catalytic Activity in an Ionic Liquid: Highly Practical Friedel-Crafts Alkenylation of Arenes with Alkynes Catalyzed by Metal Triflates. Angewandte Chemie - International Edition, 2004, 43, 6183-6185.	13.8	170
9	Significantly Enhanced Reactivities of the Nucleophilic Substitution Reactions in Ionic Liquid. Journal of Organic Chemistry, 2003, 68, 4281-4285.	3.2	159
10	A Highly Reactive and Enantioselective Bifunctional Organocatalyst for the Methanolytic Desymmetrization of Cyclic Anhydrides: Prevention of Catalyst Aggregation. Angewandte Chemie - International Edition, 2008, 47, 7872-7875.	13.8	150
11	Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography. Chemical Society Reviews, 2016, 45, 4638-4650.	38.1	130
12	Organocatalytic Enantioselective Michaelâ€Addition of Malonic Acid Halfâ€Thioesters to βâ€Nitroolefins: From Mimicry of Polyketide Synthases to Scalable Synthesis of γâ€Amino Acids. Advanced Synthesis and Catalysis, 2011, 353, 3196-3202.	4.3	128
13	Ionic liquids as powerful media in scandium triflate catalysed Diels–Alder reactions: significant rate acceleration, selectivity improvement and easy recycling of catalyst. Chemical Communications, 2001, , 1122-1123.	4.1	126
14	Poly(ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics, 2007, 178, 1235-1241.	2.7	121
15	Organotextile Catalysis. Science, 2013, 341, 1225-1229.	12.6	121
16	Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chemical Communications, 2008, , 942-944.	4.1	120
17	Bifunctional organocatalyst for methanolytic desymmetrization of cyclic anhydrides: increasing enantioselectivity by catalyst dilution. Chemical Communications, 2008, , 1208.	4.1	116
18	Metal Triflate atalyzed Regio―and Stereoselective Friedel–Crafts Alkenylation of Arenes with Alkynes in an Ionic Liquid: Scope and Mechanism. Advanced Synthesis and Catalysis, 2007, 349, 1725-1737.	4.3	114

#	Article	IF	CITATIONS
19	Unprecedented Hydrophobic Amplification in Noncovalent Organocatalysis "on Water― Hydrophobic Chiral Squaramide Catalyzed Michael Addition of Malonates to Nitroalkenes. ACS Catalysis, 2015, 5, 3613-3619.	11.2	110
20	Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angewandte Chemie - International Edition, 2013, 52, 12143-12147.	13.8	107
21	Bisâ€Terminal Hydroxy Polyethers as Allâ€Purpose, Multifunctional Organic Promoters: A Mechanistic Investigation and Applications. Angewandte Chemie - International Edition, 2009, 48, 7683-7686.	13.8	103
22	Hydrogen bonding mediated enantioselective organocatalysis in brine: significant rate acceleration and enhanced stereoselectivity in enantioselective Michael addition reactions of 1,3-dicarbonyls to β-nitroolefins. Chemical Communications, 2011, 47, 9621.	4.1	102
23	Catalytic asymmetric hydrogenation in a room temperature ionic liquid using chiral Rh-complex of ionic liquid grafted 1,4-bisphosphine ligandElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b309304b/. Chemical Communications, 2003 2624.	4.1	97
24	Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries. Journal of Power Sources, 2007, 172, 863-869.	7.8	97
25	Cr(salen) catalysed asymmetric ring opening reactions of epoxides in room temperature ionic liquids. Chemical Communications, 2000, , 1743-1744.	4.1	91
26	Heterogeneous asymmetric epoxidation of alkenes catalysed by a polymer-bound (pyrrolidine) Tj ETQq0 0 0 rgB	T /Overlocl 4.1	۹ 19 ₁ Tf 50 46
27	Efficient and practical polymeric catalysts for heterogeneous asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 1996, 7, 645-648.	1.8	89
28	DOSY NMR for monitoring self aggregation of bifunctional organocatalysts: increasing enantioselectivity with decreasing catalyst concentration. Organic and Biomolecular Chemistry, 2010, 8, 3918.	2.8	89
29	Organocatalytic Enantioselective Decarboxylative Aldol Reaction of Malonic Acid Half Thioesters with Aldehydes. Angewandte Chemie, 2013, 125, 12365-12369.	2.0	87
30	Inhibition of TNF-α, IL-1β, and IL-6 productions and NF-κB activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). International Immunopharmacology, 2002, 2, 1173-1181.	3.8	84
31	Organic radical battery with PTMA cathode: Effect of PTMA content on electrochemical properties. Journal of Industrial and Engineering Chemistry, 2008, 14, 371-376.	5.8	84
32	Parts-per-million level loading organocatalysed enantioselective silylation of alcohols. Nature Communications, 2015, 6, 7512.	12.8	81
33	Hydrogenation of Arenes by Dual Activation: Reduction of Substrates Ranging from Benzene to C ₆₀ Fullerene under Ambient Conditions. Angewandte Chemie - International Edition, 2008, 47, 8615-8617.	13.8	74
34	Hydroxylation of Alkyl Halides with Water in Ionic Liquid:Â Significantly Enhanced Nucleophilicity of Water. Journal of Organic Chemistry, 2004, 69, 3186-3189.	3.2	72
35	Effect of radical polymer cathode thickness on the electrochemical performance of organic radical battery. Solid State Ionics, 2007, 178, 1546-1551.	2.7	72
36	A polymer-supported Cinchona-based bifunctional sulfonamide catalyst: a highly enantioselective, recyclable heterogeneous organocatalyst. Chemical Communications, 2009, , 2220.	4.1	72

#	Article	IF	CITATIONS
37	Waterâ€Enabled Catalytic Asymmetric Michael Reactions of Unreactive Nitroalkenes: Oneâ€Pot Synthesis of Chiral GABAâ€Analogs with Allâ€Carbon Quaternary Stereogenic Centers. Angewandte Chemie - International Edition, 2017, 56, 1835-1839.	13.8	70
38	A Chiralâ€Anion Generator: Application to Catalytic Desilylative Kinetic Resolution of Silylâ€Protected Secondary Alcohols. Angewandte Chemie - International Edition, 2010, 49, 8915-8917.	13.8	69
39	Scalable organocatalytic asymmetric Strecker reactions catalysed by a chiral cyanide generator. Nature Communications, 2012, 3, 1212.	12.8	69
40	New C2-symmetric chiral ketones for catalytic asymmetric epoxidation of unfunctionalized olefins. Tetrahedron: Asymmetry, 1997, 8, 2921-2926.	1.8	65
41	Rechargeable Organic Radical Battery with Electrospun, Fibrous Membrane-Based Polymer Electrolyte. Journal of the Electrochemical Society, 2007, 154, A839.	2.9	63
42	Silica gel supported bis-cinchona alkaloid: a highly efficient chiral ligand for heterogeneous asymmetric dihydroxylation of olefins. Tetrahedron: Asymmetry, 1997, 8, 841-844.	1.8	62
43	Induction of heme oxygenase-1 is involved in anti-proliferative effects of paclitaxel on rat vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2004, 321, 132-137.	2.1	58
44	The dramatic acceleration effect of imidazolium ionic liquids on electron transfer reactions. Chemical Communications, 2007, , 3467.	4.1	57
45	Enantioselective Alcoholysis of <i>meso</i> â€Glutaric Anhydrides Catalyzed by <i>Cinchona</i> â€Based Sulfonamide Catalysts. Advanced Synthesis and Catalysis, 2010, 352, 2211-2217.	4.3	57
46	Self-Supported Oligomeric Grubbs/Hoveyda-Type Ruâ^'Carbene Complexes for Ring-Closing Metathesis. Organic Letters, 2007, 9, 3845-3848.	4.6	56
47	Osmium Tetroxide Anchored to Porous Resins Bearing Residual Vinyl Groups:  A Highly Active and Recyclable Solid for Asymmetric Dihydroxylation of Olefins. Organic Letters, 2002, 4, 4685-4688.	4.6	54
48	Osmium tetroxide–(QN)2PHAL in an ionic liquid: a highly efficient and recyclable catalyst system for asymmetric dihydroxylation of olefins. Chemical Communications, 2002, , 3038-3039.	4.1	54
49	Novel 1,4-Diphosphanes with Imidazolidin-2-one Backbones as Chiral Ligands: Highly Enantioselective Rh-Catalyzed Hydrogenation of Enamides. Angewandte Chemie - International Edition, 2002, 41, 847-849.	13.8	53
50	Electrochemical properties of rechargeable organic radical battery with PTMA cathode. Metals and Materials International, 2009, 15, 77-82.	3.4	53
51	Direct Catalytic Asymmetric Mannich Reaction with Dithiomalonates as Excellent Mannich Donors: Organocatalytic Synthesis of (<i>R</i>)â€Sitagliptin. Angewandte Chemie - International Edition, 2016, 55, 10825-10829.	13.8	52
52	Organocatalytic Asymmetric Synthesis of Chiral Dioxazinanes and Dioxazepanes with <i>in Situ</i> Generated Nitrones via a Tandem Reaction Pathway Using a Cooperative Cation Binding Catalyst. Journal of the American Chemical Society, 2016, 138, 16486-16492.	13.7	52
53	Heterogeneous Pd-Catalyzed Asymmetric Allylic Substitution Using Resin-Supported Trost-Type Bisphosphane Ligands. Angewandte Chemie - International Edition, 2002, 41, 3852-3854.	13.8	51
54	5ÂÂImmobilisation of chiral catalysts: easy recycling of catalyst and improvement of catalytic efficiencies. Annual Reports on the Progress of Chemistry Section C, 2005, 101, 143.	4.4	49

#	Article	IF	CITATIONS
55	Chiral Organometallic Catalysts in Confined Nanospaces: Significantly Enhanced Enantioselectivity and Stability. European Journal of Inorganic Chemistry, 2006, 2006, 2927-2935.	2.0	48
56	Thermal Behaviors of Ionic Liquids Under Microwave Irradiation and Their Application on Microwave-Assisted Catalytic Beckmann Rearrangement of Ketoximes. Synthetic Communications, 2003, 33, 2301-2307.	2.1	47
57	Acceleration of the BaylisHillman Reaction in the Presence of Ionic Liquids. Helvetica Chimica Acta, 2003, 86, 894-899.	1.6	46
58	Thermodynamically- and kinetically-controlled Friedel–Crafts alkenylation of arenes with alkynes using an acidic fluoroantimonate(ν) ionic liquid as catalyst. Chemical Communications, 2007, , 3482.	4.1	45
59	Electrochemical properties of new organic radical materials for lithium secondary batteries. Journal of Power Sources, 2008, 184, 503-507.	7.8	45
60	Self-association free bifunctional thiourea organocatalysts: synthesis of chiral α-amino acids via dynamic kinetic resolution of racemic azlactones. Organic and Biomolecular Chemistry, 2012, 10, 1052-1055.	2.8	44
61	Asymmetric Synthesis of α-Fluoro-β-Amino-oxindoles with Tetrasubstituted C–F Stereogenic Centers via Cooperative Cation-Binding Catalysis. Organic Letters, 2017, 19, 5336-5339.	4.6	44
62	Asymmetric Synthesis of Trisubstituted Tetrahydrothiophenes via in Situ Generated Chiral Fluoride-Catalyzed Cascade Sulfa-Michael/Aldol Reaction of 1,4-Dithiane-2,5-diol and α,β-Unsaturated Ketones. Organic Letters, 2017, 19, 2298-2301.	4.6	42
63	C2-Symmetric Bisphosphinobioxazoline as a Chiral Ligand. Highly Enantioselective Palladium-Catalyzed Allylic Substitutions and Formation ofP,N,N,PTetradentate Palladium (II) Complexes. Journal of Organic Chemistry, 1999, 64, 4445-4451.	3.2	41
64	Immobilisation of ketone catalyst: a method to prevent ketone catalyst from decomposing during diving divin	4.1	41
65	New method for the preparation of (R)-carnitine. Tetrahedron: Asymmetry, 1995, 6, 1063-1066.	1.8	40
66	A new C2-symmetric chiral bisphosphine ligand containing a bioxazole backbone: highly enantioselective hydrosilylation of ketones. Tetrahedron: Asymmetry, 1997, 8, 4027-4031.	1.8	39
67	Enantioselective Synthesis of <i>anti</i> – <i>syn</i> -Trihalides and <i>anti</i> – <i>syn</i> – <i>anti</i> -Tetrahalides via Asymmetric β-Elimination. Journal of the American Chemical Society, 2017, 139, 6431-6436.	13.7	39
68	Polymeric cinchona alkaloids for the heterogeneous catalytic asymmetric dihydroxylation of olefins: The influence of the polymer backbone polarity on the compatibility between polymer support and reaction medium. Tetrahedron: Asymmetry, 1995, 6, 2687-2694.	1.8	38
69	Oligoethylene Glycols as Highly Efficient Mutifunctional Promoters for Nucleophilicâ€Substitution Reactions. Chemistry - A European Journal, 2012, 18, 3918-3924.	3.3	38
70	Synthesis of new C2-symmetric bioxazoles and application as chiral ligands in asymmetric hydrosilylation. Tetrahedron: Asymmetry, 1997, 8, 2927-2932.	1.8	37
71	SN2 Fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering. Organic and Biomolecular Chemistry, 2011, 9, 418-422.	2.8	37
72	HALOGENATION OF AROMATIC METHYL KETONES USING OXONE® AND SODIUM HALIDE. Synthetic Communications, 2001, 31, 3627-3632.	2.1	36

#	Article	IF	CITATIONS
73	Direct Access to Chiral βâ€Fluoroamines with Quaternary Stereogenic Center through Cooperative Cationâ€Binding Catalysis. Chemistry - A European Journal, 2017, 23, 1268-1272.	3.3	35
74	Biomimetic catalytic transformation of toxic α-oxoaldehydes to high-value chiral α-hydroxythioesters using artificial glyoxalase I. Nature Communications, 2017, 8, 14877.	12.8	34
75	Gold-catalyzed [5+2] cycloaddition of quinolinium zwitterions and allenamides as an efficient route to fused 1,4-diazepines. Chemical Communications, 2018, 54, 6911-6914.	4.1	34
76	Hydrophobic chirality amplification in confined water cages. Nature Communications, 2019, 10, 851.	12.8	33
77	Electrochemical Properties of PEO-Based Polymer Electrolytes Blended with Different Room Temperature Ionic Liquids. Macromolecular Symposia, 2007, 249-250, 183-189.	0.7	32
78	N-Heterocyclic carbene-catalysed intermolecular Stetter reactions of acetaldehyde. Organic and Biomolecular Chemistry, 2011, 9, 2069.	2.8	32
79	A new synthetic route to (3R,4S)-3-hydroxy-4-phenylazetidin-2-one as a taxol side chain precursor. Tetrahedron: Asymmetry, 1998, 9, 983-992.	1.8	31
80	A mild and efficient method for the selective deprotection of silyl ethers using KF in the presence of tetraethylene glycol. Organic and Biomolecular Chemistry, 2011, 9, 8119.	2.8	30
81	Highly Efficient Bipolar Host Materials with Indenocarbazole and Pyrimidine Moieties for Phosphorescent Green Light-Emitting Diodes. Journal of Physical Chemistry C, 2014, 118, 28757-28763.	3.1	30
82	Chemoselective and repetitive intermolecular cross-acyloin condensation reactions between a variety of aromatic and aliphatic aldehydes using a robust N-heterocyclic carbene catalyst. Organic and Biomolecular Chemistry, 2014, 12, 1547-1550.	2.8	30
83	Cooperative Cationâ€Binding Catalysis as an Efficient Approach for Enantioselective Friedel–Crafts Reaction of Indoles and Pyrrole. Advanced Synthesis and Catalysis, 2017, 359, 811-823.	4.3	29
84	Inhibition of Inducible Nitric Oxide Synthesis by Catalposide from Catalpa ovata. Planta Medica, 2002, 68, 685-689.	1.3	28
85	Activation of Lewis acid catalysts in the presence of an organic salt containing a non-coordinating anion: its origin and application potential. Chemical Communications, 2007, , 4683.	4.1	26
86	Self-association-free dimeric cinchona alkaloid organocatalysts: unprecedented catalytic activity, enantioselectivity and catalyst recyclability in dynamic kinetic resolution of racemic azlactones. Chemical Communications, 2009, , 7224.	4.1	26
87	Enantioselective synthesis of α-deuterium labelled chiral α-amino acids via dynamic kinetic resolution of racemic azlactones. Organic and Biomolecular Chemistry, 2011, 9, 7983.	2.8	26
88	Asymmetric Synthesis of 2â€Thiocyanatoâ€2â€(1â€aminoalkyl)â€substituted 1â€Tetralones and 1â€Indanones w Tetrasubstituted Carbon Stereogenic Centers <i>via</i> Cooperative Cationâ€Binding Catalysis. Advanced Synthesis and Catalysis, 2017, 359, 1879-1891.	vith 4.3	26
89	Structure–activity relationship study at the 3′-N-position of paclitaxel: synthesis and biological evaluation of 3′-N-acyl-paclitaxel analogues. Bioorganic and Medicinal Chemistry, 2002, 10, 3145-3151.	3.0	25
90	Fluoride Anions in Self-Assembled Chiral Cage for the Enantioselective Protonation of Silyl Enol Ethers. Organic Letters, 2017, 19, 3279-3282.	4.6	25

#	Article	IF	CITATIONS
91	Bioinspired Synthesis of Chiral 3,4-Dihydropyranones via S-to-O Acyl-Transfer Reactions. Organic Letters, 2018, 20, 1584-1588.	4.6	24
92	Kinetic Resolution of Allylic Alcohol with Chiral BINOL-Based Alkoxides: A Combination of Experimental and Theoretical Studies. Journal of the American Chemical Society, 2019, 141, 1150-1159.	13.7	24
93	One-step synthesis of paclitaxel side-chain precursor: benzamide-based asymmetric aminohydroxylation of isopropyl trans-cinnamate. Tetrahedron: Asymmetry, 1999, 10, 671-674.	1.8	23
94	Novel phosphinobioxazines as chiral ligands in palladium-catalyzed enantioselective allylic substitution. Tetrahedron: Asymmetry, 1999, 10, 1795-1802.	1.8	23
95	Waterâ€Enabled Catalytic Asymmetric Michael Reactions of Unreactive Nitroalkenes: Oneâ€Pot Synthesis of Chiral GABAâ€Analogs with All arbon Quaternary Stereogenic Centers. Angewandte Chemie, 2017, 129, 1861-1865.	2.0	23
96	Asymmetric Aminalization via Cationâ€Binding Catalysis. Chemistry - A European Journal, 2018, 24, 1020-1025.	3.3	23
97	Polymeric cinchona alkaloids as catalysts in the enantioselective 2,2-cycloaddition reaction of ketene and chloral. Tetrahedron: Asymmetry, 1994, 5, 1215-1218.	1.8	21
98	Polymer-supported bis-cinchona alkaloid ligands for asymmetric dihydroxylation of alkenes—a cautionary tale. Tetrahedron: Asymmetry, 1998, 9, 1029-1034.	1.8	20
99	Synthesis of Diastereomeric 1,4-Diphosphine Ligands Bearing Imidazolidin-2-one Backbone and Their Application in Rh(I)-Catalyzed Asymmetric Hydrogenation of Functionalized Olefins. Advanced Synthesis and Catalysis, 2005, 347, 563-570.	4.3	20
100	Cinchona-based Sulfonamide Organocatalysts: Concept, Scope, and Practical Applications. Bulletin of the Korean Chemical Society, 2014, 35, 1590-1600.	1.9	20
101	Heterogeneous asymmetric aminohydroxylation of alkenes using a silica gel-supported bis-cinchona alkaloid. Chemical Communications, 1998, , 2435-2436.	4.1	19
102	Access to Chiral GABA Analogues Bearing a Trifluoromethylated All-Carbon Quaternary Stereogenic Center through Water-Promoted Organocatalytic Michael Reactions. Organic Letters, 2019, 21, 6715-6719.	4.6	19
103	Direct Access to β-Trifluoromethyl-β-hydroxy Thioesters by Biomimetic Organocatalytic Enantioselective Aldol Reaction. Organic Letters, 2019, 21, 4567-4570.	4.6	19
104	Oxygen tripod ligands with functionalized pendant arms: the dangling ligand concept in homogeneous catalysis. Organometallics, 1993, 12, 4949-4954.	2.3	17
105	Organocatalytic Enantioselective Cycloetherifications Using a Cooperative Cation-Binding Catalyst. Organic Letters, 2018, 20, 5319-5322.	4.6	17
106	Radiolabeling of paclitaxel with electrophilic 123 I. Bioorganic and Medicinal Chemistry, 2000, 8, 65-68.	3.0	16
107	Direct Catalytic Asymmetric Mannich Reaction with Dithiomalonates as Excellent Mannich Donors: Organocatalytic Synthesis of (<i>R</i>)â€6itagliptin. Angewandte Chemie, 2016, 128, 10983-10987.	2.0	16
108	Kinetic Resolution of β-Hydroxy Carbonyl Compounds via Enantioselective Dehydration Using a Cation-Binding Catalyst: Facile Access to Enantiopure Chiral Aldols. Organic Letters, 2018, 20, 2003-2006.	4.6	16

#	Article	IF	CITATIONS
109	Multicomponent dipolar cycloadditions: efficient synthesis of polycyclic fused pyrrolizidinesviaazomethine ylides. Organic and Biomolecular Chemistry, 2019, 17, 1773-1777.	2.8	16
110	Bio-inspired Water-Driven Catalytic Enantioselective Protonation. Journal of the American Chemical Society, 2021, 143, 2552-2557.	13.7	16
111	Synthesis, biological activity and receptor-based 3-D QSAR study of 3′-N-substituted-3′-N-debenzoylpaclitaxel analogues. Bioorganic and Medicinal Chemistry, 2002, 10, 3135-3143.	3.0	15
112	Markedly enhanced recyclability of osmium catalyst in asymmetric dihydroxylation reactions by using macroporous resins bearing both residual vinyl groups and quaternary ammonium moieties. Chemical Communications, 2005, , 3337.	4.1	15
113	Cooperative Asymmetric Cation-Binding Catalysis. Accounts of Chemical Research, 2021, 54, 4319-4333.	15.6	15
114	Preparation of Ethyl (<i>R</i>)-3-hydroxy-4-chlorobutyrate by Selective Reduction of (<i>R</i>)-4-(Trichloromethyl)-oxetan-2-one: Key Intermediate to (<i>R</i>)-Carnitine and (<i>R</i>)-4-Amino-3-hydroxybutyric Acid. Synthetic Communications, 1997, 27, 1009-1014.	2.1	14
115	Oxidatively pure chiral (salen)Co(III)-X complexes in situ prepared by Lewis acid-promoted electron transfer from chiral (salen)Co(II) to oxygen: Their application in the hydrolytic kinetic resolution of terminal epoxides. Journal of Molecular Catalysis A, 2007, 271, 70-74.	4.8	14
116	Preparation and application of TEMPO-based di-radical organic electrode with ionic liquid-based polymer electrolyte. RSC Advances, 2012, 2, 10394.	3.6	14
117	Asymmetric Hydrocyanation of 3-Phenoxybenzaldehyde Catalyzed by Polymer-Bound Cyclic Dipeptides. Synthetic Communications, 1994, 24, 103-109.	2.1	13
118	Osmylated macroporous resins: safe, highly efficient and recyclable catalysts for asymmetric aminohydroxylation of olefinsElectronic supplementary information (ESI) available: experimental procedure. See http://www.rsc.org/suppdata/cc/b3/b303022a/. Chemical Communications, 2003, , 1312-1313	4.1	13
119	New Mono-Quarternized Bis-Cinchona Alkaloid Ligands for Asymmetric Dihydroxylation of Olefins in Aqueous Medium: Unprecedented High Enantioselectivity and Recyclability. Advanced Synthesis and Catalysis, 2006, 348, 2560-2564.	4.3	13
120	The reaction of cobaltocene with secondary phosphine oxides revisited. Trapping of an intermediate cobalt(I) complex. Inorganic Chemistry, 1989, 28, 3845-3849.	4.0	11
121	An Overview of Cinchona Alkaloids in Chemistry. , 0, , 1-10.		11
122	Nucleophilic substitution reactions promoted by oligoethylene glycols: a mechanistic study of ionâ€pair S _N 2 processes facilitated by Lewis base. Journal of Physical Organic Chemistry, 2013, 26, 9-14.	1.9	11
123	Synthesis and biology of 3′- N -acyl- N -debenzoylpaclitaxel analogues. Bioorganic and Medicinal Chemistry, 1999, 7, 2115-2119.	3.0	10
124	Diastereoselective diaza-Cope rearrangement reaction. Chemical Communications, 2008, , 1335.	4.1	10
125	Self-Association-Free and Recyclable, Dimeric Cinchona Alkaloid Organocatalysts for Methanolytic Desymmetrization of meso-Glutaric Anhydrides. Bulletin of the Korean Chemical Society, 2011, 32, 3127-3129.	1.9	9
126	Ultrasoundâ€Promoted Enantioselective Decarboxylative Protonation of αâ€Aminomalonate Hemiesters by Chiral Squaramides: A Practical Approach to Both Enantiomers of αâ€Amino Esters. European Journal of Organic Chemistry, 2017, 2017, 4562-4565.	2.4	7

#	Article	IF	CITATIONS
127	Highly stereoselective formation of optically pure 2,4-oxazolidinedione via diastereoselective dihydroxylation of (4S)-3-((E)-3′-substituted-2′-propenoyl)-4-isopropyl-2-oxazolidinone. Tetrahedron: Asymmetry, 1995, 6, 871-872.	1.8	6
128	Asymmetric dihydroxylation of trans-cinnamates under high-pressure conditions: substantial increase of turnover number. Tetrahedron: Asymmetry, 2001, 12, 1533-1535.	1.8	6
129	Polymer-supported oligoethylene glycols as heterogeneous multifunctional catalysts for nucleophilic substitution. Tetrahedron, 2013, 69, 3577-3583.	1.9	6
130	Chromatographic resolution of racemic α-halocarboxylic acids and O-substituted α-hydroxycarboxylic acids via diastereomeric N-acyloxazolidinones. Journal of Chromatography A, 1993, 654, 303-308.	3.7	5
131	Organocatalytic regiospecific synthesis of 1H-indene-2-carbaldehyde derivatives: suppression of cycloolefin isomerisation by employing sterically demanding catalysts. Organic and Biomolecular Chemistry, 2017, 15, 1355-1362.	2.8	5
132	Very Efficient Nucleophilic Aromatic Fluorination Reaction in Molten Salts: A Mechanistic Study. Bulletin of the Korean Chemical Society, 2012, 33, 881-884.	1.9	5
133	Asymmetric Catalysis in Ionic Liquids: Easy Recycling of Catalyst and Improvement of Catalytic Performances. ACS Symposium Series, 2004, , 145-160.	0.5	4
134	Cinchona Alkaloids as Chiral Ligands in Asymmetric Oxidations. , 0, , 29-71.		4
135	Cinchona-Based Organocatalysts for Desymmetrization ofmeso-Compounds and (Dynamic) Kinetic Resolution of Racemic Compounds. , 0, , 325-357.		2
136	Cinchona Alkaloids and their Derivatives as Chirality Inducers in Metal-Promoted Enantioselective Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions. , 0, , 73-104.		2
137	Cinchona-Mediated Enantioselective Protonations. , 0, , 171-196.		2
138	Cinchona-Catalyzed Nucleophilic 1,2-Addition to CO and CN Bonds. , O, , 197-247.		2
139	Alkaloids as Chirality Transmitters in Asymmetric Catalysis. The Alkaloids Chemistry and Biology, 1999, 53, 1-56.	2.0	1
140	Appendix: Tabular Survey of Selected Cinchona-Promoted Asymmetric Reactions. , 0, , 471-505.		1
141	Cinchona-Catalyzed Cycloaddition Reactions. , 0, , 297-324.		1
142	Cinchona-Catalyzed Nucleophilic Conjugate Addition to Electron-Deficient CC Double Bonds. , 0, , 249-295.		1
143	New Method of Fluorination Using Potassium Fluoride in Ionic Liquid: Significantly Enhanced Reactivity of Fluoride and Improved Selectivity ChemInform, 2003, 34, no-no.	0.0	0
144	Supported Chiral Catalysts on Inorganic Materials. ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
145	Osmium Tetroxide—(QN)2PHAL in an Ionic Liquid: A Highly Efficient and Recyclable Catalyst System for Asymmetric Dihydroxylation of Olefins ChemInform, 2003, 34, no.	0.0	0
146	Hydroxylation of Alkyl Halides with Water in Ionic Liquid: Significantly Enhanced Nucleophilicity of Water ChemInform, 2004, 35, no.	0.0	0
147	Dramatic Enhancement of Catalytic Activity in an Ionic Liquid: Highly Practical Friedel?Crafts Alkenylation of Arenes with Alkynes Catalyzed by Metal Triflates ChemInform, 2005, 36, no.	0.0	Ο
148	Markedly Enhanced Recyclability of Osmium Catalyst in Asymmetric Dihydroxylation Reactions by Using Macroporous Resins Bearing Both Residual Vinyl Groups and Quaternary Ammonium Moieties ChemInform, 2005, 36, no.	0.0	0
149	Cinchona-Based Organocatalysts for Asymmetric Oxidations and Reductions. , 0, , 105-129.		0
150	Frontispiece: Asymmetric Aminalization via Cationâ€Binding Catalysis. Chemistry - A European Journal, 2018, 24, .	3.3	0