Gordon S Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2022191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Î ² -Adrenoceptor Signaling in Skeletal Muscle: Implications for Muscle Wasting and Disease. Physiological Reviews, 2008, 88, 729-767.	13.1	344
2	Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology, 2008, 9, 213-228.	2.0	329
3	Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiology of Disease, 2008, 31, 1-19.	2.1	286
4	Force and power output of fast and slow skeletal muscles from mdx mice 6â€⊋8 months old. Journal of Physiology, 2001, 535, 591-600.	1.3	268
5	Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 2012, 484, 394-398.	13.7	243
6	Impaired skeletal muscle development and function in male, but not female, genomic <i>androgen receptor</i> knockout mice. FASEB Journal, 2008, 22, 2676-2689.	0.2	179
7	Elevated expression of activins promotes muscle wasting and cachexia. FASEB Journal, 2014, 28, 1711-1723.	0.2	163
8	Whole Body Deletion of AMP-activated Protein Kinase β2 Reduces Muscle AMPK Activity and Exercise Capacity. Journal of Biological Chemistry, 2010, 285, 37198-37209.	1.6	145
9	The Orphan Nuclear Receptor, NOR-1, a Target of β-Adrenergic Signaling, Regulates Gene Expression that Controls Oxidative Metabolism in Skeletal Muscle. Endocrinology, 2008, 149, 2853-2865.	1.4	132
10	Therapeutic approaches for muscle wasting disorders. , 2007, 113, 461-487.		130
11	Disease-Induced Skeletal Muscle Atrophy and Fatigue. Medicine and Science in Sports and Exercise, 2016, 48, 2307-2319.	0.2	128
12	AMPKâ€independent pathways regulate skeletal muscle fatty acid oxidation. Journal of Physiology, 2008, 586, 5819-5831.	1.3	121
13	Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell, 2015, 162, 1365-1378.	13.5	121
14	Contraction-induced injury to single permeabilized muscle fibers from <i>mdx</i> , transgenic <i>mdx</i> , and control mice. American Journal of Physiology - Cell Physiology, 2000, 279, C1290-C1294.	2.1	117
15	Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity. Diabetes, 2013, 62, 56-64.	0.3	117
16	Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle. FEBS Letters, 1999, 460, 343-348.	1.3	114
17	Antibodyâ€directed myostatin inhibition in 21â€moâ€old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB Journal, 2010, 24, 4433-4442.	0.2	112
18	Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E505-E513.	1.8	111

#	Article	IF	CITATIONS
19	Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E577-E585.	1.8	110
20	The Orphan Nuclear Receptor, NOR-1, Is a Target of Î ² -Adrenergic Signaling in Skeletal Muscle. Endocrinology, 2006, 147, 5217-5227.	1.4	109
21	Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E506-E516.	1.8	108
22	Improved Contractile Function of the mdx Dystrophic Mouse Diaphragm Muscle after Insulin-Like Growth Factor-I Administration. American Journal of Pathology, 2002, 161, 2263-2272.	1.9	107
23	Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R716-R726.	0.9	97
24	Examination of â€~lipotoxicity' in skeletal muscle of highâ€fat fed and <i>ob</i> / <i>ob</i> mice. Journal of Physiology, 2009, 587, 1593-1605.	1.3	95
25	Systemic administration of β 2 -adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. British Journal of Pharmacology, 2006, 147, 587-595.	2.7	93
26	Optimizing Plasmid-Based Gene Transfer for Investigating Skeletal Muscle Structure and Function. Molecular Therapy, 2006, 13, 795-803.	3.7	93
27	β2-Agonist administration reverses muscle wasting and improves muscle function in aged rats. Journal of Physiology, 2004, 555, 175-188.	1.3	91
28	Importance of functional and metabolic impairments in the characterization of the C-26 murine model of cancer cachexia. DMM Disease Models and Mechanisms, 2012, 5, 533-45.	1.2	91
29	In Vivoandin VitroCorrection of themdxDystrophin Gene Nonsense Mutation by Short-Fragment Homologous Replacement. Human Gene Therapy, 2001, 12, 629-642.	1.4	90
30	IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice. Neuromuscular Disorders, 2001, 11, 260-268.	0.3	86
31	The potential and the pitfalls of \hat{l}^2 -adrenoceptor agonists for the management of skeletal muscle wasting. , 2008, 120, 219-232.		84
32	Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing. Genome Biology, 2021, 22, 310.	3.8	83
33	Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Clinical Nutrition, 2014, 33, 448-458.	2.3	81
34	β2-Adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury. Journal of Applied Physiology, 2004, 96, 1385-1392.	1.2	80
35	Adaptations in rat skeletal muscle following long-term resistance exercise training. European Journal of Applied Physiology, 1998, 77, 372-378.	1.2	79
36	Duchenne muscular dystrophy: Focus on pharmaceutical and nutritional interventions. International Journal of Biochemistry and Cell Biology, 2007, 39, 469-477.	1.2	75

#	Article	IF	CITATIONS
37	The calcineurin signal transduction pathway is essential for successful muscle regeneration in mdx dystrophic mice. Acta Neuropathologica, 2004, 107, 299-310.	3.9	73
38	<i>Smad7</i> gene delivery prevents muscle wasting associated with cancer cachexia in mice. Science Translational Medicine, 2016, 8, 348ra98.	5.8	70
39	Notexin causes greater myotoxic damage and slower functional repair in mouse skeletal muscles than bupivacaine. Muscle and Nerve, 2006, 34, 577-585.	1.0	69
40	Quantitative measurement of resting skeletal muscle [Ca2+]i following acute and long-term downhill running exercise in mice. Cell Calcium, 1997, 22, 373-383.	1.1	68
41	Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Therapy, 2006, 13, 1657-1664.	2.3	68
42	Deleterious effects of chronic clenbuterol treatment on endurance and sprint exercise performance in rats. Clinical Science, 2000, 98, 339-347.	1.8	67
43	A Metabolic Roadmap for Somatic Stem Cell Fate. Cell Metabolism, 2020, 31, 1052-1067.	7.2	66
44	Effects of β ₂ -agonist administration and exercise on contractile activation of skeletal muscle fibers. Journal of Applied Physiology, 1996, 81, 1610-1618.	1.2	65
45	Leucine as a treatment for muscle wasting: A critical review. Clinical Nutrition, 2014, 33, 937-945.	2.3	65
46	Hyperbaric oxygen modulates antioxidant enzyme activity in rat skeletal muscles. European Journal of Applied Physiology, 2001, 86, 24-27.	1.2	64
47	Cellular mechanisms underlying temporal changes in skeletal muscle protein synthesis and breakdown during chronic β-adrenoceptor stimulation in mice. Journal of Physiology, 2010, 588, 4811-4823.	1.3	63
48	β2-Agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1386-R1394.	0.9	60
49	Activated calcineurin ameliorates contraction-induced injury to skeletal muscles ofmdxdystrophic mice. Journal of Physiology, 2006, 575, 645-656.	1.3	60
50	Systemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E499-E505.	1.8	60
51	Low dose formoterol administration improves muscle function in dystrophic mdx mice without increasing fatigue. Neuromuscular Disorders, 2007, 17, 47-55.	0.3	59
52	Making Fast-Twitch Dystrophic Muscles Bigger Protects Them from Contraction Injury and Attenuates the Dystrophic Pathology. American Journal of Pathology, 2010, 176, 29-33.	1.9	59
53	Antibody-Directed Myostatin Inhibition Improves Diaphragm Pathology in Young but not Adult Dystrophic mdx Mice. American Journal of Pathology, 2010, 176, 2425-2434.	1.9	57
54	Defective lysosome reformation during autophagy causes skeletal muscle disease. Journal of Clinical Investigation, 2021, 131, .	3.9	57

#	Article	IF	CITATIONS
55	Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm. BMC Genomics, 2009, 10, 448.	1.2	55
56	Phosphoproteomics reveals conserved exerciseâ€stimulated signaling and AMPK regulation of storeâ€operated calcium entry. EMBO Journal, 2019, 38, e102578.	3.5	54
57	Current pharmacotherapies for sarcopenia. Expert Opinion on Pharmacotherapy, 2019, 20, 1645-1657.	0.9	54
58	Glucosinolates From Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Frontiers in Pharmacology, 2021, 12, 767975.	1.6	53
59	Interleukin-15 Administration Improves Diaphragm Muscle Pathology and Function in Dystrophic mdx Mice. American Journal of Pathology, 2005, 166, 1131-1141.	1.9	52
60	Modulation of Insulin-like Growth Factor (IGF)-I and IGF-Binding Protein Interactions Enhances Skeletal Muscle Regeneration and Ameliorates the Dystrophic Pathology in mdx Mice. American Journal of Pathology, 2007, 171, 1180-1188.	1.9	52
61	Administration of insulin-like growth factor-I improves fatigue resistance of skeletal muscles from dystrophicmdx mice. Muscle and Nerve, 2004, 30, 295-304.	1.0	50
62	Evaluating an Internet weight loss program for diabetes prevention. Health Promotion International, 2005, 20, 221-228.	0.9	49
63	Contraction-induced injury to single muscle fibers: velocity of stretch does not influence the force deficit. American Journal of Physiology - Cell Physiology, 1998, 275, C1548-C1554.	2.1	46
64	Cytoskeletal Tropomyosin Tm5NM1 Is Required for Normal Excitation–Contraction Coupling in Skeletal Muscle. Molecular Biology of the Cell, 2009, 20, 400-409.	0.9	45
65	Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice. Journal of Applied Physiology, 2011, 110, 1065-1072.	1.2	45
66	L-Citrulline Protects Skeletal Muscle Cells from Cachectic Stimuli through an iNOS-Dependent Mechanism. PLoS ONE, 2015, 10, e0141572.	1.1	43
67	β2-Agonist administration increases sarcoplasmic reticulum Ca2+-ATPase activity in aged rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E526-E533.	1.8	42
68	Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice. PLoS ONE, 2014, 9, e91514.	1.1	42
69	Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle and Nerve, 2000, 23, 1700-1705.	1.0	41
70	Attenuation of Age-Related Muscle Wasting and Weakness in Rats After Formoterol Treatment: Therapeutic Implications for Sarcopenia. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 813-823.	1.7	41
71	Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. American Journal of Physiology - Cell Physiology, 2008, 294, C161-C168.	2.1	41
72	Insulinâ€like growth factorâ€l analogue protects muscles of dystrophic <i>mdx</i> mice from contractionâ€mediated damage. Experimental Physiology, 2008, 93, 1190-1198.	0.9	40

#	Article	IF	CITATIONS
73	Separation of Fast from Slow Anabolism by Site-specific PEGylation of Insulin-like Growth Factor I (IGF-I). Journal of Biological Chemistry, 2011, 286, 19501-19510.	1.6	40
74	Excitation ontraction coupling and sarcoplasmic reticulum function in lechanically skinned fibres from fast skeletal muscles of aged mice. Journal of Physiology, 2002, 543, 169-176.	1.3	38
75	Update on emerging drugs for cancer cachexia. Expert Opinion on Emerging Drugs, 2009, 14, 619-632.	1.0	37
76	Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1656-R1665.	0.9	37
77	Glycine metabolism in skeletal muscle. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 237-242.	1.3	37
78	Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160528.	1.8	37
79	Stimulation of calcineurin Aα activity attenuates muscle pathophysiology in <i>mdx</i> dystrophic mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R983-R992.	0.9	36
80	Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner. Amino Acids, 2014, 46, 2643-2652.	1.2	36
81	Intramuscular β ₂ -agonist administration enhances early regeneration and functional repair in rat skeletal muscle after myotoxic injury. Journal of Applied Physiology, 2008, 105, 165-172.	1.2	35
82	Therapies for Improving Muscle Function in Neuromuscular Disorders. Exercise and Sport Sciences Reviews, 2001, 29, 141-148.	1.6	34
83	β-Adrenoceptor signaling in regenerating skeletal muscle after β-agonist administration. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E932-E940.	1.8	34
84	Emerging drugs for sarcopenia: age-related muscle wasting. Expert Opinion on Emerging Drugs, 2004, 9, 345-361.	1.0	33
85	Force and power output of diaphragm muscle strips from mdx and control mice after clenbuterol treatment. Neuromuscular Disorders, 2001, 11, 192-196.	0.3	32
86	Update on emerging drugs for sarcopenia – age-related muscle wasting. Expert Opinion on Emerging Drugs, 2008, 13, 655-673.	1.0	32
87	Novel role for βâ€adrenergic signalling in skeletal muscle growth, development and regeneration. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 397-401.	0.9	32
88	Heritable pathologic cardiac hypertrophy in adulthood is preceded by neonatal cardiac growth restriction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R672-R680.	0.9	31
89	YEAR-LONG CLENBUTEROL TREATMENT OF MICE INCREASES MASS, BUT NOT SPECIFIC FORCE OR NORMALIZED POWER, OF SKELETAL MUSCLES. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 117-120.	0.9	30
90	Inhibition of the renin–angiotensin system improves physiological outcomes in mice with mild or severe cancer cachexia. International Journal of Cancer, 2013, 133, 1234-1246.	2.3	30

#	Article	IF	CITATIONS
91	Power Output of Fast and Slow Skeletal Muscles of MDX (Dystrophic) and Control Mice After Clenbuterol Treatment. Experimental Physiology, 2000, 85, 295-299.	0.9	29
92	Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats. Journal of Muscle Research and Cell Motility, 2000, 21, 747-752.	0.9	29
93	Redox modulation of maximum force production of fast-and slow-twitch skeletal muscles of rats and mice. Journal of Applied Physiology, 2001, 90, 832-838.	1.2	29
94	Tackling Australia's future health problems: developing strategies to combat sarcopenia â^ age-related muscle wasting and weakness. Internal Medicine Journal, 2004, 34, 294-296.	0.5	29
95	ANABOLIC AGENTS FOR IMPROVING MUSCLE REGENERATION AND FUNCTION AFTER INJURY. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 852-858.	0.9	29
96	Deleterious effects of chronic clenbuterol treatment on endurance and sprint exercise performance in rats. Clinical Science, 2000, 98, 339.	1.8	28
97	BCP-15 Improves Aspects of the Dystrophic Pathology in mdx and dko Mice with Differing Efficacies in Heart and Skeletal Muscle. American Journal of Pathology, 2016, 186, 3246-3260.	1.9	28
98	Mas Receptor Activation Slows Tumor Growth and Attenuates Muscle Wasting in Cancer. Cancer Research, 2019, 79, 706-719.	0.4	28
99	Analysis of Ca2+ and Sr2+ activation characteristics in skinned muscle fibre preparations with different proportions of myofibrillar isoforms. Journal of Muscle Research and Cell Motility, 1995, 16, 65-78.	0.9	27
100	Length-tension relationships are altered in regenerating muscles of the rat after bupivacaine injection. Journal of Applied Physiology, 2005, 98, 1998-2003.	1.2	27
101	Ageing prolongs inflammatory marker expression in regenerating rat skeletal muscles after injury. Journal of Inflammation, 2011, 8, 41.	1.5	27
102	Mitochondrial hydrogen sulfide supplementation improves health in the <i>C. elegans</i> Duchenne muscular dystrophy model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
103	Hyperbaric oxygen improves contractile function of regenerating rat skeletal muscle after myotoxic injury. Journal of Applied Physiology, 2000, 89, 1477-1482.	1.2	26
104	Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration. Journal of Physiology, 2004, 558, 549-560.	1.3	26
105	Chronic Î ² -agonist administration affects cardiac function of adult but not old rats, independent of Î ² -adrenoceptor density. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H344-H349.	1.5	26
106	Differential calcineurin signalling activity and regeneration efficacy in diaphragm and limb muscles of dystrophic mdx mice. Neuromuscular Disorders, 2006, 16, 337-346.	0.3	26
107	Glycine restores the anabolic response to leucine in a mouse model of acute inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E970-E981.	1.8	26
108	Depolarization-induced contraction and SR function in mechanically skinned muscle fibers from dystrophic <i>mdx</i> mice. American Journal of Physiology - Cell Physiology, 2003, 285, C522-C528.	2.1	25

#	Article	IF	CITATIONS
109	Force deficits and breakage rates after single lengthening contractions of single fast fibers from unconditioned and conditioned muscles of young and old rats. American Journal of Physiology - Cell Physiology, 2008, 295, C249-C256.	2.1	25
110	Alterations in Notch signalling in skeletal muscles from <i>mdx</i> and <i>dko</i> dystrophic mice and patients with Duchenne muscular dystrophy. Experimental Physiology, 2014, 99, 675-687.	0.9	25
111	Glycine supplementation during calorie restriction accelerates fat loss and protects against further muscle loss in obese mice. Clinical Nutrition, 2016, 35, 1118-1126.	2.3	25
112	Calcineurin-Aα activation enhances the structure and function of regenerating muscles after myotoxic injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R686-R694.	0.9	24
113	Tranilast administration reduces fibrosis and improves fatigue resistance in muscles of mdx dystrophic mice. Fibrogenesis and Tissue Repair, 2014, 7, 1.	3.4	24
114	Effects of leukemia inhibitory factor on rat skeletal muscles are modulated by clenbuterol. Muscle and Nerve, 2002, 25, 194-201.	1.0	23
115	Plasmid-Based Gene Transfer in Mouse Skeletal Muscle by Electroporation. Methods in Molecular Biology, 2008, 433, 115-125.	0.4	23
116	Chronic β ₂ -adrenoceptor stimulation impairs cardiac relaxation via reduced SR Ca ²⁺ -ATPase protein and activity. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2587-H2595.	1.5	23
117	Using AAV vectors expressing the \hat{l}^22 -adrenoceptor or associated G $\hat{l}\pm$ proteins to modulate skeletal muscle mass and muscle fibre size. Scientific Reports, 2016, 6, 23042.	1.6	23
118	The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation. Frontiers in Cell and Developmental Biology, 2019, 7, 254.	1.8	23
119	Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity. Molecular Metabolism, 2021, 45, 101157.	3.0	22
120	Endurance exercise effects on the contractile properties of single, skinned skeletal muscle fibres of young rats. Pflugers Archiv European Journal of Physiology, 1991, 418, 161-167.	1.3	21
121	Therapeutic potential of PEGylated insulin-like growth factor I for skeletal muscle disease evaluated in two murine models of muscular dystrophy. Growth Hormone and IGF Research, 2012, 22, 69-75.	0.5	20
122	The role of β-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 601-606.	1.3	19
123	Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle. Molecular Metabolism, 2016, 5, 1083-1091.	3.0	19
124	Glycine Protects Muscle Cells From Wasting in vitro via mTORC1 Signaling. Frontiers in Nutrition, 2019, 6, 172.	1.6	19
125	Scriptaid enhances skeletal muscle insulin action and cardiac function in obese mice. Diabetes, Obesity and Metabolism, 2017, 19, 936-943.	2.2	18
126	Hyperbaric oxygen increases the contractile function of regenerating rat slow muscles. Medicine and Science in Sports and Exercise, 2002, 34, 630-636.	0.2	17

#	Article	IF	CITATIONS
127	Iron accumulation in skeletal muscles of old mice is associated with impaired regeneration after ischaemia–reperfusion damage. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 476-492.	2.9	17
128	Specific Force of the Rat Extraocular Muscles, Levator and Superior Rectus, Measured In Situ. Journal of Neurophysiology, 2001, 85, 1027-1032.	0.9	16
129	Hydrogen peroxide increases depolarizationâ€induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles. Journal of Physiology, 2002, 539, 883-891.	1.3	16
130	Citrulline Does Not Prevent Skeletal Muscle Wasting or Weakness in Limb-Casted Mice. Journal of Nutrition, 2015, 145, 900-906.	1.3	16
131	Amino acid sensing and activation of mechanistic target of rapamycin complex 1. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 67-73.	1.3	16
132	Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury. Skeletal Muscle, 2016, 6, 36.	1.9	16
133	Emerging drugs for treating skeletal muscle injury and promoting muscle repair. Expert Opinion on Emerging Drugs, 2011, 16, 163-182.	1.0	15
134	Disruption of muscle renin-angiotensin system in AT1aâ^'/â^'mice enhances muscle function despite reducing muscle mass but compromises repair after injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R321-R331.	0.9	15
135	G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle. Frontiers in Physiology, 2014, 5, 170.	1.3	15
136	Glycine administration attenuates progression of dystrophic pathology in prednisolone-treated dystrophin/utrophin null mice. Scientific Reports, 2019, 9, 12982.	1.6	15
137	Expression and localization of heat-shock proteins during skeletal muscle cell proliferation and differentiation and the impact of heat stress. Cell Stress and Chaperones, 2019, 24, 749-761.	1.2	15
138	Murine models of Duchenne muscular dystrophy: is there a best model?. American Journal of Physiology - Cell Physiology, 2021, 321, C409-C412.	2.1	15
139	Contractile activation characteristics of single permeabilized fibres from levator palpebrae superioris, orbicularis oculi and vastus lateralis muscles from humans. Journal of Physiology, 1999, 519, 615-622.	1.3	14
140	Therapeutic clenbuterol treatment does not alter Ca2+ sensitivity of permeabilized fast muscle fibres from exercise trained or untrained horses. Journal of Muscle Research and Cell Motility, 2003, 24, 471-476.	0.9	14
141	Physiological characterization of a mouse model of cachexia in colorectal liver metastases. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R854-R864.	0.9	14
142	Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting. Human Molecular Genetics, 2014, 23, 6697-6711.	1.4	14
143	Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice. Journal of Applied Physiology, 2015, 118, 1113-1121.	1.2	14
144	Functional properties of regenerating skeletal muscle following LIF administration. Muscle and Nerve, 2000, 23, 1586-1588.	1.0	13

#	Article	IF	CITATIONS
145	Endurance training adaptations modulate the redox-force relationship of rat isolated slow-twitch skeletal muscles. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 77-81.	0.9	13
146	Intramuscular administration of PEGylated IGF-I improves skeletal muscle regeneration after myotoxic injury. Growth Hormone and IGF Research, 2013, 23, 128-133.	0.5	13
147	Functional β-Adrenoceptors Are Important for Early Muscle Regeneration in Mice through Effects on Myoblast Proliferation and Differentiation. PLoS ONE, 2014, 9, e101379.	1.1	13
148	Sarcopenia – Age-Related Muscle Wasting and Weakness. , 2011, , .		13
149	Novel therapies for sarcopenia: ameliorating age-related changes in skeletal muscle. Expert Opinion on Therapeutic Patents, 2002, 12, 11-27.	2.4	12
150	Chronic formoterol administration reduces cardiac mitochondrial protein synthesis and oxidative capacity in mice. International Journal of Cardiology, 2011, 146, 270-272.	0.8	12
151	Editorial update on emerging drugs for cancer cachexia. Expert Opinion on Emerging Drugs, 2012, 17, 5-9.	1.0	12
152	Identification of FHL1 as a therapeutic target for Duchenne muscular dystrophy. Human Molecular Genetics, 2014, 23, 618-636.	1.4	12
153	Dietary meat and protection against sarcopenia. Meat Science, 2018, 144, 180-185.	2.7	11
154	Rigor Force Responses Of Permeabilized Fibres From Fast And Slow Skeletal Muscles Of Aged Rats. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 779-781.	0.9	10
155	Early functional muscle regeneration after myotoxic injury in mice is unaffected by nNOS absence. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1358-R1366.	0.9	10
156	Hyperbaric oxygen increases the contractile function of regenerating rat slow muscles. Medicine and Science in Sports and Exercise, 2002, 34, 630-636.	0.2	10
157	Novel therapies for muscular dystrophy and other muscle wasting conditions. Expert Opinion on Therapeutic Patents, 2001, 11, 587-601.	2.4	9
158	Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice. Human Gene Therapy, 2012, 23, 824-836.	1.4	8
159	FHL1 Reduces Dystrophy in Transgenic Mice Overexpressing FSHD Muscular Dystrophy Region Gene 1 (FRG1). PLoS ONE, 2015, 10, e0117665.	1.1	8
160	Role for Plant-Derived Antioxidants in Attenuating Cancer Cachexia. Antioxidants, 2022, 11, 183.	2.2	8
161	Choline administration attenuates aspects of the dystrophic pathology in mdx mice. Clinical Nutrition Experimental, 2019, 24, 83-91.	2.0	7
162	Spatiotemporal Mapping Reveals Regional Gastrointestinal Dysfunction in mdx Dystrophic Mice Ameliorated by Oral L-arginine Supplementation. Journal of Neurogastroenterology and Motility, 2020, 26, 133-146.	0.8	7

Gordon S Lynch

#	Article	IF	CITATIONS
163	Dystrophin deficiency disrupts muscle clock expression and mitochondrial quality control in <i>mdx</i> mice. American Journal of Physiology - Cell Physiology, 2021, 321, C288-C296.	2.1	7
164	Bone Geometry Is Altered by Follistatinâ€Induced Muscle Growth in Young Adult Male Mice. JBMR Plus, 2021, 5, e10477.	1.3	6
165	Power Output of Fast and Slow Skeletal Muscles of MDX (Dystrophic) and Control Mice After Clenbuterol Treatment. , 2000, 85, 295.		6
166	Therapeutic potential of orphan drugs for the rare skeletal muscle diseases. Expert Opinion on Orphan Drugs, 2015, 3, 1397-1425.	0.5	5
167	Phosphorylation of ERK and dystrophin S3059 protects against inflammation-associated C2C12 myotube atrophy. American Journal of Physiology - Cell Physiology, 2021, 320, C956-C965.	2.1	5
168	Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1541-1553.	2.9	5
169	Update on therapies for sarcopenia: novel approaches for age-related muscle wasting and weakness. Expert Opinion on Therapeutic Patents, 2004, 14, 1329-1344.	2.4	4
170	Therapeutic Potential of Skeletal Muscle Plasticity and Slow Muscle Programming for Muscular Dystrophy and Related Muscle Conditions. , 2017, , 277-292.		4
171	Overcoming nature's paradox in skeletal muscle to optimise animal production. Animal Production Science, 2019, 59, 1957.	0.6	3
172	HSP70 drives myoblast fusion during C2C12 myogenic differentiation. Biology Open, 2020, 9, .	0.6	3
173	Mechanisms of chemotherapyâ€induced muscle wasting in mice with cancer cachexia. JCSM Rapid Communications, 2022, 5, 102-116.	0.6	3
174	Investigating the Potential for Sulforaphane to Attenuate Gastrointestinal Dysfunction in mdx Dystrophic Mice. Nutrients, 2021, 13, 4559.	1.7	3
175	Identifying the challenges for successful pharmacotherapeutic management of sarcopenia. Expert Opinion on Pharmacotherapy, 2022, 23, 1233-1237.	0.9	3
176	ENDURANCE TRAINING EFFECTS ON THE CONTRACTILE ACTIVATION CHARACTERISTICS OF SINGLE MUSCLE FIBRES FROM THE RAT DIAPHRAGM. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 430-437.	0.9	2
177	Disruption of Hfe leads to skeletal muscle iron loading and reduction of hemoproteins involved in oxidative metabolism in a mouse model of hereditary hemochromatosis. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130082.	1.1	2
178	Deletion of suppressor of cytokine signaling 3 (SOCS3) in muscle stem cells does not alter muscle regeneration in mice after injury. PLoS ONE, 2019, 14, e0212880.	1.1	1
179	Overview of Sarcopenia. , 2011, , 1-7.		1

180 Making old muscles young again $\hat{a} \in \hat{}$ a therapeutic role for $\hat{l}^2 \hat{l}^2 2$ -agonists?. , 2004, , 33-35.

1

#	Article	IF	CITATIONS
181	IGFâ€I improves excitationâ€contraction coupling in skeletal muscle fibers of dystrophic mdx mice. FASEB Journal, 2007, 21, A1357.	0.2	1
182	βâ€Adrenergic stimulation enhances IGF signaling in regenerating rat skeletal muscle. FASEB Journal, 2007, 21, A944.	0.2	1
183	Albumin and C-reactive protein relate to functional and body composition parameters in patients admitted to geriatric rehabilitation after acute hospitalization: findings from the RESORT cohort. European Geriatric Medicine, 2022, , 1.	1.2	1
184	Regenerative Rehabilitation for Duchenne Muscular Dystrophy. Physiology in Health and Disease, 2022, , 85-119.	0.2	1
185	Striated muscle activator of Rho signalling (STARS) overexpression in the mdx mouse enhances muscle functional capacity and regulates the actin cytoskeleton and oxidative phosphorylation pathways. Experimental Physiology, 2021, 106, 1597-1611.	0.9	0
186	βâ€Adrenergic signalling in regenerating rat skeletal muscle. FASEB Journal, 2006, 20, A818.	0.2	0
187	Role of β-Adrenergic Signalling in Skeletal Muscle Wasting: Implications for Sarcopenia. , 2011, , 449-471.		0

Aging and Skeletal Muscle. , 2019, , 41-41.

0