
Shameem Ahmad Lone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2022190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal control of electrical vehicle incorporated hybrid power system with second order fractionalâ€active disturbance rejection controller. Optimal Control Applications and Methods, 2023, 44, 905-934.	2.1	19
2	Adaptive Neuro Sliding Mode Control of Superconducting Magnetic Energy Storage System. Smart Science, 2023, 11, 355-363.	3.2	0
3	Power generation control of restructured hybrid power system with FACTS and energy storage devices using optimal cascaded fractionalâ€order controller. Optimal Control Applications and Methods, 2022, 43, 757-786.	2.1	10
4	Dynamic performance improvement of wind-diesel power system through robust sliding mode control of hybrid energy storage system. Wind Engineering, 2022, 46, 1065-1079.	1.9	3
5	Neuro adaptive sliding mode control of a fast acting energy storage system. IFAC-PapersOnLine, 2022, 55, 309-314.	0.9	0
6	Golden Eagle Optimized Control for a Dual Stage Photovoltaic Residential System with Electric Vehicle Charging Capability. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 4525-4545.	2.3	5
7	A <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>ıml:mi> < mn 3.6</td><td>nl:mi>d8</td></mml:math>	ıml:mi> < mn 3.6	nl:mi>d8
8	Nesearch, 2022, 240, 100129. Voltage and frequency control of wind–diesel power system through adaptive sliding mode control of superconducting magnetic energy storage. Wind Engineering, 2021, 45, 1057-1071.	1.9	13
9	Dynamic performance improvement of isolated power system using intelligently controlled SMES. IET Generation, Transmission and Distribution, 2021, 15, 408-419.	2.5	5
10	Super-Twisting Algorithm-Based Sliding Mode Control of SMES for Frequency Control in Wind Penetrated Power System. Springer Proceedings in Energy, 2021, , 79-90.	0.3	6
11	Load frequency control of <scp>multiâ€source</scp> electrical power system integrated with <scp>solarâ€thermal</scp> and electric vehicle. International Transactions on Electrical Energy Systems, 2021, 31, e12918.	1.9	32
12	System dynamics and control of EV incorporated deregulated power system using MBOâ€optimized cascaded IDâ€₽D controller. International Transactions on Electrical Energy Systems, 2021, 31, e13100.	1.9	21
13	<scp>Stateâ€observer</scp> based <scp>IDD</scp> controller for concurrent <scp>frequencyâ€voltage</scp> control of a hybrid power system with electric vehicle uncertainties. International Transactions on Electrical Energy Systems, 2021, 31, .	1.9	21
14	Fuzzy and MBO optimized Load Frequency Control of hybrid Power System. , 2021, , .		2
15	Improved frequency response of a wind-diesel power system with adaptive RBF sliding mode control of SMES. , 2021, , .		1
16	Modelling and performance assessment of a standalone hybrid wind-diesel-superconducting magnetic energy storage system using four-quadrant operation of superconducting magnetic energy storage. Wind Engineering, 2018, 42, 496-509.	1.9	4
17	MATLAB/Simulink-based modelling and performance assessment of wind–diesel energy storage system. Wind Engineering, 2018, 42, 194-208.	1.9	9
18	Modeling and simulation of an energy storage based multi-machine power system for transient		8

stability study. , 2017, , .

Shameem Ahmad Lone

#	Article	IF	CITATIONS
19	Adaptive predictive control of a small capacity SMES unit for improved frequency control of a windâ€diesel power system. IET Renewable Power Generation, 2017, 11, 1832-1840.	3.1	29
20	Super-capacitor based energy storage system for improved load frequency control. Electric Power Systems Research, 2009, 79, 226-233.	3.6	90
21	Incorporation of a Redox Flow Battery in a Wind-Diesel Power System for Simultaneous Frequency and Voltage Control. Wind Engineering, 2008, 32, 179-195.	1.9	2
22	Modelling and Simulation of a Stand-Alone Hybrid Power Generation System Incorporating Redox Flow Battery Storage System. International Journal of Modelling and Simulation, 2008, 28, 337-346.	3.3	4
23	Improved load frequency control with superconducting magnetic energy storage in interconnected power systems. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2, 387-397.	1.4	16
24	Integrating a Redox Flow Battery System with a Wind-Diesel Power System. , 2006, , .		14
25	Power quality improvement of a stand-alone power system subjected to various disturbances. Journal of Power Sources, 2006, 163, 604-615.	7.8	16
26	Redox Flow Batteries: Modelled for Power Quality Improvements in Autonomous Wind-Diesel Power Systems. Wind Engineering, 2004, 28, 577-586.	1.9	6
27	Modelling the Control of an Isolated Power System Based on Diesel and Pitch Controlled Wind Generation. Wind Engineering, 2004, 28, 445-451.	1.9	2