Nick Devoogdt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021966/publications.pdf

Version: 2024-02-01

131 7,588 49
papers citations h-index

135

all docs

citations h-index g-index

135
docs citations 135
times ranked citing authors

58464

82

#	Article	IF	CITATIONS
1	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	5.8	604
2	Specific Cell Targeting with Nanobody Conjugated Branched Gold Nanoparticles for Photothermal Therapy. ACS Nano, 2011, 5, 4319-4328.	7.3	338
3	Phase I Study of ⁶⁸ Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. Journal of Nuclear Medicine, 2016, 57, 27-33.	2.8	317
4	Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective <i>In Vivo</i> Imaging of Tumor-Associated Macrophages. Cancer Research, 2012, 72, 4165-4177.	0.4	263
5	Nanobodies and their potential applications. Nanomedicine, 2013, 8, 1013-1026.	1.7	252
6	Preclinical screening of antiâ€HER2 nanobodies for molecular imaging of breast cancer. FASEB Journal, 2011, 25, 2433-2446.	0.2	246
7	Synthesis, Preclinical Validation, Dosimetry, and Toxicity of ⁶⁸ Ga-NOTA-Anti-HER2 Nanobodies for iPET Imaging of HER2 Receptor Expression in Cancer. Journal of Nuclear Medicine, 2013, 54, 776-784.	2.8	173
8	Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 2012, 110, 927-937.	2.0	167
9	Targeted Radionuclide Therapy with A ¹⁷⁷ Lu-labeled Anti-HER2 Nanobody. Theranostics, 2014, 4, 708-720.	4.6	165
10	PET Imaging of Macrophage Mannose Receptor–Expressing Macrophages in Tumor Stroma Using ¹⁸ F-Radiolabeled Camelid Single-Domain Antibody Fragments. Journal of Nuclear Medicine, 2015, 56, 1265-1271.	2.8	139
11	Site-Specific Labeling of Cysteine-Tagged Camelid Single-Domain Antibody-Fragments for Use in Molecular Imaging. Bioconjugate Chemistry, 2014, 25, 979-988.	1.8	135
12	Generation of Single Domain Antibody Fragments Derived from Camelids and Generation of Manifold Constructs. Methods in Molecular Biology, 2012, 907, 145-176.	0.4	124
13	1311-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment. Clinical Cancer Research, 2017, 23, 6616-6628.	3.2	124
14	Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opinion on Biological Therapy, 2016, 16, 1035-1047.	1.4	119
15	Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. Journal of Controlled Release, 2020, 317, 34-42.	4.8	115
16	Immuno-imaging using nanobodies. Current Opinion in Biotechnology, 2011, 22, 877-881.	3.3	109
17	Localization, mechanism and reduction of renal retention of technetiumâ€99m labeled epidermal growth factor receptorâ€specific nanobody in mice. Contrast Media and Molecular Imaging, 2011, 6, 85-92.	0.4	108
18	In Vitro Analysis and In Vivo Tumor Targeting of a Humanized, Grafted Nanobody in Mice Using Pinhole SPECT/Micro-CT. Journal of Nuclear Medicine, 2010, 51, 1099-1106.	2.8	106

#	Article	IF	Citations
19	Camelid single-domain antibody-fragment engineering for (pre)clinical (i>in vivo (i>molecular imaging applications: adjusting the bullet to its target. Expert Opinion on Biological Therapy, 2013, 13, 1149-1160.	1.4	105
20	Nanobodies as Tools for In Vivo Imaging of Specific Immune Cell Types. Journal of Nuclear Medicine, 2010, 51, 782-789.	2.8	102
21	Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. Journal of Nuclear Medicine, 2018, 59, 885-891.	2.8	101
22	Sortase Aâ€mediated siteâ€specific labeling of camelid singleâ€domain antibodyâ€fragments: a versatile strategy for multiple molecular imaging modalities. Contrast Media and Molecular Imaging, 2016, 11, 328-339.	0.4	100
23	Immunogenicity Risk Profile of Nanobodies. Frontiers in Immunology, 2021, 12, 632687.	2.2	97
24	Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget, 2017, 8, 41932-41946.	0.8	95
25	Secretory leukocyte protease inhibitor promotes the tumorigenic and metastatic potential of cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5778-5782.	3.3	92
26	Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nuclear Medicine and Biology, 2013, 40, 52-59.	0.3	91
27	Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opinion on Drug Delivery, 2014, 11, 1939-1954.	2.4	88
28	The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time's a Charm. International Journal of Molecular Sciences, 2021, 22, 75.	1.8	87
29	18F-nanobody for PET imaging of HER2 overexpressing tumors. Nuclear Medicine and Biology, 2016, 43, 247-252.	0.3	86
30	Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: Embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics, 2018, 8, 3559-3570.	4.6	85
31	Targeting of vascular cell adhesion molecule-1 by ¹⁸ F-labelled nanobodies for PET/CT imaging of inflamed atherosclerotic plaques. European Heart Journal Cardiovascular Imaging, 2016, 17, 1001-1008.	0.5	83
32	Theranostics in immuno-oncology using nanobody derivatives. Theranostics, 2019, 9, 7772-7791.	4.6	83
33	SPECT Imaging of Joint Inflammation with Nanobodies Targeting the Macrophage Mannose Receptor in a Mouse Model for Rheumatoid Arthritis. Journal of Nuclear Medicine, 2013, 54, 807-814.	2.8	80
34	Nanobody-coupled microbubbles as novel molecular tracer. Journal of Controlled Release, 2012, 158, 346-353.	4.8	78
35	Improved Tumor Targeting of Anti-HER2 Nanobody Through <i>N</i> -Succinimidyl 4-Guanidinomethyl-3-lodobenzoate Radiolabeling. Journal of Nuclear Medicine, 2014, 55, 650-656.	2.8	77
36	Effect of Dye and Conjugation Chemistry on the Biodistribution Profile of Near-Infrared-Labeled Nanobodies as Tracers for Image-Guided Surgery. Molecular Pharmaceutics, 2017, 14, 1145-1153.	2.3	76

3

#	Article	IF	CITATIONS
37	Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies, 2019, 8, 12.	1.2	76
38	Development of ¹⁷⁷ Luâ€nanobodies for radioimmunotherapy of HER2â€positive breast cancer: evaluation of different bifunctional chelators. Contrast Media and Molecular Imaging, 2012, 7, 254-264.	0.4	70
39	Clinical Translation of [68Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT Imaging of Protumorigenic Macrophages. Molecular Imaging and Biology, 2019, 21, 898-906.	1.3	69
40	Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia, 2014, 28, 444-447.	3.3	68
41	Phase I Trial of ¹³¹ I-GMIB-Anti-HER2-VHH1, a New Promising Candidate for HER2-Targeted Radionuclide Therapy in Breast Cancer Patients. Journal of Nuclear Medicine, 2021, 62, 1097-1105.	2.8	67
42	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	2.3	66
43	Generation and Characterization of Small Single Domain Antibodies Inhibiting Human Tumor Necrosis Factor Receptor 1. Journal of Biological Chemistry, 2015, 290, 4022-4037.	1.6	63
44	Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media and Molecular Imaging, 2014, 9, 211-220.	0.4	57
45	Theranostic Radiolabeled Anti-CD20 sdAb for Targeted Radionuclide Therapy of Non-Hodgkin Lymphoma. Molecular Cancer Therapeutics, 2017, 16, 2828-2839.	1.9	57
46	Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation. Molecular Imaging and Biology, 2017, 19, 867-877.	1.3	54
47	Al ¹⁸ F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging. Theranostics, 2017, 7, 2924-2939.	4.6	54
48	Surface display of a single-domain antibody library on Gram-positive bacteria. Cellular and Molecular Life Sciences, 2013, 70, 1081-1093.	2.4	53
49	Correlation Between Epidermal Growth Factor Receptor-Specific Nanobody Uptake and Tumor Burden: A Tool for Noninvasive Monitoring of Tumor Response to Therapy. Molecular Imaging and Biology, 2011, 13, 940-948.	1.3	51
50	Evaluating a Single Domain Antibody Targeting Human PD-L1 as a Nuclear Imaging and Therapeutic Agent. Cancers, 2019, 11, 872.	1.7	50
51	Secretory Leukocyte Protease Inhibitor in Cancer Development. Annals of the New York Academy of Sciences, 2004, 1028, 380-389.	1.8	47
52	Molecular Imaging with Macrophage CRIg-Targeting Nanobodies for Early and Preclinical Diagnosis in a Mouse Model of Rheumatoid Arthritis. Journal of Nuclear Medicine, 2014, 55, 824-829.	2.8	47
53	^{99m} Tc-cAbVCAM1-5 Imaging Is a Sensitive and Reproducible Tool for the Detection of Inflamed Atherosclerotic Lesions in Mice. Journal of Nuclear Medicine, 2014, 55, 1678-1684.	2.8	43
54	Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules, 2019, 9, 548.	1.8	43

#	Article	IF	CITATIONS
55	Preclinical Targeted \hat{l}_{\pm} - and $\hat{l}^2\hat{a}^2$ -Radionuclide Therapy in HER2-Positive Brain Metastasis Using Camelid Single-Domain Antibodies. Cancers, 2020, 12, 1017.	1.7	43
56	Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model. Molecular Imaging and Biology, 2018, 20, 361-367.	1.3	42
57	Ultrasound Molecular Imaging of Atherosclerosis With Nanobodies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2520-2530.	1.1	42
58	Anti-Human PD-L1 Nanobody for Immuno-PET Imaging: Validation of a Conjugation Strategy for Clinical Translation. Biomolecules, 2020, 10, 1388.	1.8	42
59	A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Scientific Reports, 2017, 7, 15130.	1.6	41
60	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5.8	41
61	Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opinion on Drug Delivery, 2016, 13, 1149-1163.	2.4	40
62	The alarm anti-protease, secretory leukocyte protease inhibitor, is a proliferation and survival factor for ovarian cancer cells. Carcinogenesis, 2007, 29, 466-472.	1.3	39
63	Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology, 2012, 217, 1266-1272.	0.8	38
64	Site-Specific Labeling of His-Tagged Nanobodies with 99mTc: A Practical Guide. Methods in Molecular Biology, 2012, 911, 485-490.	0.4	37
65	Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies. Current Pharmaceutical Design, 2017, 22, 6500-6518.	0.9	37
66	Limiting the protein corona: A successful strategy for inÂvivo active targeting of anti-HER2 nanobody-functionalized nanostars. Biomaterials, 2017, 123, 15-23.	5.7	36
67	Overexpression of protease inhibitorâ€dead secretory leukocyte protease inhibitor causes more aggressive ovarian cancer <i>in vitro</i> and <i>in vivo</i> . Cancer Science, 2009, 100, 434-440.	1.7	35
68	Fluorine-18 labeling of an anti-HER2 VHH using a residualizing prosthetic group via a strain-promoted click reaction: Chemistry and preliminary evaluation. Bioorganic and Medicinal Chemistry, 2018, 26, 1939-1949.	1.4	32
69	An Efficient Method for Labeling Single Domain Antibody Fragments with ¹⁸ F Using Tetrazine- <i>Trans</i> -Cyclooctene Ligation and a Renal Brush Border Enzyme-Cleavable Linker. Bioconjugate Chemistry, 2018, 29, 4090-4103.	1.8	32
70	Monitoring liver macrophages using nanobodies targeting Vsig4: Concanavalin A induced acute hepatitis as paradigm. Immunobiology, 2015, 220, 200-209.	0.8	27
71	Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nature Protocols, 2018, 13, 2330-2347.	5.5	27
72	Mechanisms Underlying Connexin Hemichannel Activation in Disease. International Journal of Molecular Sciences, 2021, 22, 3503.	1.8	27

#	Article	IF	Citations
73	AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model. Human Molecular Genetics, 2017, 26, 1353-1364.	1.4	26
74	Single-Domain Antibody Nuclear Imaging Allows Noninvasive Quantification of LAG-3 Expression by Tumor-Infiltrating Leukocytes and Predicts Response of Immune Checkpoint Blockade. Journal of Nuclear Medicine, 2021, 62, 1638-1644.	2.8	26
75	Specific Targeting of Atherosclerotic Plaques in ApoEâ^'/â^' Mice Using a New Camelid sdAb Binding the Vulnerable Plaque Marker LOX-1. Molecular Imaging and Biology, 2014, 16, 690-698.	1.3	25
76	Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Molecular Imaging and Biology, 2017, 19, 49-58.	1.3	24
77	Evaluation of [99mTc]Radiolabeled Macrophage Mannose Receptor-Specific Nanobodies for Targeting of Atherosclerotic Lesions in Mice. Molecular Imaging and Biology, 2018, 20, 260-267.	1.3	24
78	Development and Validation of a Small Single-domain Antibody That Effectively Inhibits Matrix Metalloproteinase 8. Molecular Therapy, 2016, 24, 890-902.	3.7	23
79	Stromal-targeting radioimmunotherapy mitigates the progression of therapy-resistant tumors. Journal of Controlled Release, 2019, 314, 1-11.	4.8	22
80	Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy. Pharmaceuticals, 2022, 15, 13.	1.7	22
81	Pharmacokinetics of radiolabeled dimeric sdAbs constructs targeting human CD20. New Biotechnology, 2018, 45, 69-79.	2.4	21
82	Labeling Single Domain Antibody Fragments with Fluorine-18 Using 2,3,5,6-Tetrafluorophenyl 6-[¹⁸ F]Fluoronicotinate Resulting in High Tumor-to-Kidney Ratios. Molecular Pharmaceutics, 2019, 16, 214-226.	2.3	21
83	The antigenâ€binding moiety in the driver's seat of CARs. Medicinal Research Reviews, 2022, 42, 306-342.	5.0	21
84	The Tumor-Promoting Effect of TNF- \hat{l}_{\pm} Involves the Induction of Secretory Leukocyte Protease Inhibitor. Journal of Immunology, 2006, 177, 8046-8052.	0.4	20
85	A nanobody-based nuclear imaging tracer targeting dipeptidyl peptidase 6 to determine the mass of human beta cell grafts in mice. Diabetologia, 2020, 63, 825-836.	2.9	20
86	Direct Immobilization of Engineered Nanobodies on Gold Sensors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17353-17360.	4.0	20
87	Evaluation of Antiatherogenic Properties of Ezetimibe Using ³ H-Labeled Low-Density-Lipoprotein Cholesterol and ^{99m} Tc-cAbVCAM1–5 SPECT in ApoE ^{â⁻'/â⁻'} Mice Fed the Paigen Diet. Journal of Nuclear Medicine, 2017, 58, 1088-1093.	2.8	19
88	Radiometal-labeled anti-VCAM-1 nanobodies as molecular tracers for atherosclerosis – impact of radiochemistry on pharmacokinetics. Biological Chemistry, 2019, 400, 323-332.	1.2	19
89	Molecular Imaging Using Nanobodies: A Case Study. Methods in Molecular Biology, 2012, 911, 559-567.	0.4	18
90	Identification of Nanobodies against the Acute Myeloid Leukemia Marker CD33. International Journal of Molecular Sciences, 2020, 21, 310.	1.8	18

#	Article	IF	CITATIONS
91	Imaging of Glioblastoma Tumor-Associated Myeloid Cells Using Nanobodies Targeting Signal Regulatory Protein Alpha. Frontiers in Immunology, 2021, 12, 777524.	2.2	18
92	Single Domain Antibody-Mediated Blockade of Programmed Death-Ligand 1 on Dendritic Cells Enhances CD8 T-cell Activation and Cytokine Production. Vaccines, 2019, 7, 85.	2.1	17
93	Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Protein Expression and Purification, 2017, 133, 25-34.	0.6	16
94	Beyond the Barrier: Targeted Radionuclide Therapy in Brain Tumors and Metastases. Pharmaceutics, 2019, 11, 376.	2.0	16
95	Site-Specific Radiolabeling of a Human PD-L1 Nanobody via Maleimide–Cysteine Chemistry. Pharmaceuticals, 2021, 14, 550.	1.7	15
96	Non-canonical roles of connexins. Progress in Biophysics and Molecular Biology, 2020, 153, 35-41.	1.4	14
97	Rational Design of Nanobody80 Loop Peptidomimetics: Towards Biased \hat{l}^2 2 Adrenergic Receptor Ligands. Chemistry - A European Journal, 2017, 23, 9632-9640.	1.7	13
98	Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules, 2021, 11, 63.	1.8	13
99	Non-Invasive Imaging of Amyloid Deposits in a Mouse Model of AGel Using 99mTc-Modified Nanobodies and SPECT/CT. Molecular Imaging and Biology, 2016, 18, 887-897.	1.3	12
100	A non-internalised CD38-binding radiolabelled single-domain antibody fragment to monitor and treat multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 183.	6.9	12
101	Specificity Evaluation and Disease Monitoring in Arthritis Imaging with Complement Receptor of the Ig superfamily targeting Nanobodies. Scientific Reports, 2016, 6, 35966.	1.6	11
102	Site-Specific Radioactive Labeling of Nanobodies. Methods in Molecular Biology, 2018, 1827, 505-540.	0.4	11
103	Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods and Clinical Development, 2021, 22, 172-182.	1.8	11
104	The Road to Personalized Myeloma Medicine: Patient-specific Single-domain Antibodies for Anti-idiotypic Radionuclide Therapy. Molecular Cancer Therapeutics, 2022, 21, 159-169.	1.9	9
105	CS1-specific single-domain antibodies labeled with Actinium-225 prolong survival and increase CD8+ T cells and PD-L1 expression in Multiple Myeloma. Oncolmmunology, 2021, 10, 2000699.	2.1	9
106	Emerging applications of nanobodies in cancer therapy. International Review of Cell and Molecular Biology, 2022, , 143-199.	1.6	9
107	The Design and Preclinical Evaluation of a Single-Label Bimodal Nanobody Tracer for Image-Guided Surgery. Biomolecules, 2021, 11, 360.	1.8	8
108	Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging. Molecules, 2020, 25, 1838.	1.7	7

#	Article	IF	CITATIONS
109	The regulated expression of an intrabody produces a mutant phenotype inDrosophila. FEBS Letters, 1998, 437, 81-86.	1.3	6
110	Development and Characterization of Nanobodies Targeting the Kupffer Cell. Frontiers in Immunology, 2021, 12, 641819.	2.2	6
111	Phase I results of CAM-H2: Safety profile and tumor targeting in patients Journal of Clinical Oncology, 2018, 36, e13017-e13017.	0.8	6
112	Reshaping nanobodies for affinity purification on protein a. New Biotechnology, 2020, 57, 20-28.	2.4	5
113	Evaluation of single domain antibodies as nuclear tracers for imaging of the immune checkpoint receptor human lymphocyte activation gene-3 in cancer. EJNMMI Research, 2021, 11, 115.	1.1	5
114	Targeted Radionuclide Therapy with Low and High-Dose Lutetium-177–Labeled Single Domain Antibodies Induces Distinct Immune Signatures in a Mouse Melanoma Model. Molecular Cancer Therapeutics, 2022, 21, 1136-1148.	1.9	5
115	Radiotheranostic Agents in Hematological Malignancies. Frontiers in Immunology, 0, 13, .	2.2	5
116	Camelid reporter gene imaging: a generic method for in vivo cell tracking. EJNMMI Research, 2014, 4, 32.	1.1	4
117	Increased Expression of Adherens Junction Components in Mouse Liver following Bile Duct Ligation. Biomolecules, 2019, 9, 636.	1.8	4
118	Lyophilization of NOTA-sdAbs: First step towards a cold diagnostic kit for 68Ga-labeling. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 166, 194-204.	2.0	4
119	Site-Selective Functionalization of Nanobodies Using Intein-Mediated Protein Ligation for Innovative Bioconjugation. Methods in Molecular Biology, 2019, 2033, 117-130.	0.4	4
120	In Vivo Assessment of VCAM-1 Expression by SPECT/CT Imaging in Mice Models of Human Triple Negative Breast Cancer. Cancers, 2019, 11, 1039.	1.7	3
121	CAM-H2 effectively targets and treats HER2 positive brain lesions: A comparative preclinical study with trastuzumab. Annals of Oncology, 2019, 30, iii59.	0.6	3
122	Newer Bioconjugation Methods. , 2021, , 517-529.		1
123	Classical and alternative activation of macrophages: different pathways of macrophage-mediated tumor promotion., 2008,, 139-156.		1
124	SAT0075â€The use of macrophage mannose receptor-targeting nanobodies and spect imaging to study joint inflammation in mice with collagen-induced arthritis. Annals of the Rheumatic Diseases, 2013, 71, 495.2-495.	0.5	0
125	Effects of Altered Antigen Processing on H-2Dk Mediated NK Inhibition in a Murine T Lymphoma Model. Advances in Experimental Medicine and Biology, 1998, 451, 237-240.	0.8	0
126	Effects of Altered Antigen Processing on T-Cell Responses Toward Murine T-Lymphomas. Advances in Experimental Medicine and Biology, 1998, 451, 211-215.	0.8	0

#	ARTICLE	IF	CITATIONS
127	Abstract 330: Ezetimibe Prevents Atherogenesis Through Increased Catabolism and Fecal Excretion of LDL-cholesterol and Reduced Atherosclerotic Plaque Inflammation in Apolipoprotein E Knock-out Mice Fed a Paigen Diet. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
128	Nanobody-based PET/CT imaging of HER2 expression in breast carcinoma: Phase I results and potential to assess tumor heterogeneity Journal of Clinical Oncology, 2015, 33, e11600-e11600.	0.8	0
129	Development of LAG-3 nanobodies as potent cancer imaging tracers. Annals of Oncology, 2019, 30, xi10-xi11.	0.6	O
130	Design and preclinical evaluation of a single-label bimodal nanobody tracer for image-guided surgery (Conference Presentation). , 2020, , .		0
131	Abstract P3-02-05: Assessment of repeatability and uptake quantification of 68GaNOTA-anti-HER2 sdAb PET/CT in patients with locally advanced or metastatic breast cancer. Cancer Research, 2022, 82, P3-02-05-P3-02-05.	0.4	0