Chunyan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021953/publications.pdf

Version: 2024-02-01

44 papers 1,269 citations

361045 20 h-index 35 g-index

44 all docs 44 docs citations

times ranked

44

1475 citing authors

#	Article	IF	CITATIONS
1	A mild and safe gas-responsive molecularly imprinted sensor for highly specific recognition of hepatitis B virus. Sensors and Actuators B: Chemical, 2022, 366, 131990.	4.0	6
2	An enzyme-free DNA circuit-assisted MoS2 nanosheet enhanced fluorescence assay for label-free DNA detection. Talanta, 2021, 222, 121505.	2.9	12
3	Removal of Bisphenol AÂand 2, 4-Dichlorophenol from Lake Water Using a Flower-Like Covalent Organic Framework. Analytical Letters, 2021, 54, 347-363.	1.0	O
4	An amine-functionalized metal-organic framework and triple-helix molecular beacons as a sensing platform for miRNA ratiometric detection. Talanta, 2021, 228, 122199.	2.9	20
5	Specific determination of HBV using a viral aptamer molecular imprinting polymer sensor based on ratiometric metal organic framework. Mikrochimica Acta, 2021, 188, 221.	2.5	19
6	A sandwich sensor based on imprinted polymers and aptamers for highly specific double recognition of viruses. Analyst, The, 2021, 146, 3924-3932.	1.7	15
7	An enzyme-free probe based on G-triplex assisted by silver nanocluster pairs for sensitive detection of microRNA-21. Mikrochimica Acta, 2021, 188, 55.	2.5	14
8	Photonic and Magnetic Dual-Responsive Molecularly Imprinted Sensor for Highly Specific Recognition of Enterovirus 71. ACS Sensors, 2021, 6, 3715-3723.	4.0	12
9	A rapid label- and enzyme-free G-quadruplex-based fluorescence strategy for highly-sensitive detection of HIV DNA. Analyst, The, 2020, 145, 206-212.	1.7	14
10	A novel Wulffâ€type boronate acidâ€functionalized magnetic metalâ€organic framework imprinted polymer for specific recognition of glycoproteins under physiological pH. Journal of Separation Science, 2020, 43, 3785-3792.	1.3	16
11	A novel fluorescence molecularly imprinted sensor for Japanese encephalitis virus detection based on metal organic frameworks and passivation-enhanced selectivity. Talanta, 2020, 212, 120744.	2.9	64
12	Single-excited double-emission CdTe@CdS quantum dots for use in a fluorometric hybridization assay for multiple tumor-related microRNAs. Mikrochimica Acta, 2020, 187, 134.	2.5	6
13	Molecular imprinting resonance light scattering nanoprobes based on pH-responsive metal-organic framework for determination of hepatitis A virus. Mikrochimica Acta, 2020, 187, 140.	2.5	45
14	An ultrasensitive guanine wire-based resonance light scattering method using G-quadruplex self-assembly for determination of microRNA-122. Mikrochimica Acta, 2019, 186, 599.	2.5	8
15	A general scheme for fluorometric detection of multiple oligonucleotides by using RNA-cleaving DNAzymes: application to the determination of microRNA-141 and H5N1 virus DNA. Mikrochimica Acta, 2019, 186, 511.	2.5	7
16	Dual-Monitoring Glycosylation and Local pH in Live Cells by Metabolic Oligosaccharide Engineering with a Ratiometric Fluorescent Tag. Analytical Chemistry, 2019, 91, 13720-13728.	3.2	6
17	DNA-programming multicolor silver nanoclusters for sensitively simultaneous detection of two HIV DNAs. Sensors and Actuators B: Chemical, 2019, 296, 126608.	4.0	43
18	Fast and sensitive detection of Japanese encephalitis virus based on a magnetic molecular imprinted polymer–resonance light scattering sensor. Talanta, 2019, 202, 21-26.	2.9	40

#	Article	IF	CITATIONS
19	Visual Simultaneous Detection of Hepatitis A and B Viruses Based on a Multifunctional Molecularly Imprinted Fluorescence Sensor. Analytical Chemistry, 2019, 91, 15748-15756.	3.2	90
20	Simple G-quadruplex-based 2-aminopurine fluorescence probe for highly sensitive and amplified detection of microRNA-21. Talanta, 2018, 178, 974-979.	2.9	36
21	Accurate and sensitive fluorescence detection of DNA based on G-quadruplex hairpin DNA. Talanta, 2018, 176, 422-427.	2.9	32
22	A boronate affinity MIP-based resonance light scattering sensor for sensitive detection of glycoproteins. Analytical Methods, 2018, 10, 5112-5117.	1.3	7
23	A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus. RSC Advances, 2018, 8, 32262-32268.	1.7	30
24	Highly Efficient Separation of Glycoprotein by Dual-Functional Magnetic Metal–Organic Framework with Hydrophilicity and Boronic Acid Affinity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27612-27620.	4.0	61
25	A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta, 2017, 165, 659-663.	2.9	40
26	Surfaceâ€imprinted microspheres prepared by a templateâ€oriented method for the chiral separation of amlodipine. Journal of Separation Science, 2017, 40, 1869-1876.	1.3	10
27	Highly efficient chiral separation of amlodipine enantiomers via triple recognition hollow fiber membrane extraction. Journal of Chromatography A, 2017, 1490, 63-73.	1.8	21
28	Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere. Talanta, 2017, 169, 98-103.	2.9	49
29	Ratiometric Fluorescence Sensor for the MicroRNA Determination by Catalyzed Hairpin Assembly. ACS Sensors, 2017, 2, 1430-1434.	4.0	80
30	Development of a thermosensitive molecularly imprinted polymer resonance light scattering sensor for rapid and highly selective detection of hepatitis A virus in vitro. Sensors and Actuators B: Chemical, 2017, 253, 1188-1193.	4.0	41
31	Reduced graphene oxide as a resonance light-scattering probe for thrombin detection using dual-aptamer-based dsDNA. Analytica Chimica Acta, 2017, 985, 141-147.	2.6	17
32	2-aminopurine probe in combination with catalyzed hairpin assembly signal amplification for simple and sensitive detection of microRNA. Talanta, 2017, 174, 336-340.	2.9	33
33	An interference-free and label-free sandwich-type magnetic silicon microsphere -rGO-based probe for fluorescence detection of microRNA. Talanta, 2017, 174, 679-683.	2.9	15
34	Simultaneous detection of two hepatocellar carcinoma-related microRNAs using a clever single-labeled fluorescent probe. Analytica Chimica Acta, 2017, 983, 181-188.	2.6	11
35	A virus resonance light scattering sensor based on mussel-inspired molecularly imprinted polymers for high sensitive and high selective detection of Hepatitis A Virus. Biosensors and Bioelectronics, 2017, 87, 679-685.	5.3	90
36	Selective adsorption of elastase by surface molecular imprinting materials prepared with novel monomer. RSC Advances, 2016, 6, 43223-43227.	1.7	6

#	Article	IF	CITATION
37	Rapid and efficient enantioseparation of (<i>S</i>)â€amlodipine by surfaceâ€imprinted core–shell polymer microspheres. Journal of Separation Science, 2016, 39, 4354-4359.	1.3	6
38	A simple and sensitive resonance light scattering method based on aggregation of gold nanoparticles for selective detection of microRNA-21. RSC Advances, 2016, 6, 83078-83083.	1.7	10
39	"Click on the bidirectional switch― the aptasensor for simultaneous detection of lysozyme and ATP with high sensitivity and high selectivity. Scientific Reports, 2016, 6, 18814.	1.6	15
40	Highly selective recognition and fluorescent detection of JEV via virus-imprinted magnetic silicon microspheres. Sensors and Actuators B: Chemical, 2016, 233, 607-614.	4.0	45
41	A virus-MIPs fluorescent sensor based on FRET for highly sensitive detection of JEV. Talanta, 2016, 160, 360-366.	2.9	45
42	Double-Strand Displacement Biosensor and Quencher-Free Fluorescence Strategy for Rapid Detection of MicroRNA. Analytical Chemistry, 2016, 88, 4254-4258.	3.2	81
43	A resonance light scattering sensor based on bioinspired molecularly imprinted polymers for selective detection of papain at trace levels. Analytica Chimica Acta, 2016, 912, 125-132.	2.6	34
44	Fluorescent drug screening based on aggregation of DNA-templated silver nanoclusters, and its application to iridium (III) derived anticancer drugs. Mikrochimica Acta, 2016, 183, 1571-1577.	2.5	17