Juan M D Tascon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2021607/juan-m-d-tascon-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

235	15,488	57	118
papers	citations	h-index	g-index
239 ext. papers	16,645 ext. citations	7.1 avg, IF	6.45 L-index

#	Paper	IF	Citations
235	A Simple and Expeditious Route to Phosphate-Functionalized, Water-Processable Graphene for Capacitive Energy Storage. <i>ACS Applied Materials & Description of Storage (Note: Acs Applied Materials & Description of Storage)</i> . 13, 54860-54873	9.5	2
234	Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved MoS Nanosheets for Energy Storage and Catalytic Applications. <i>ACS Applied Materials & Camp; Interfaces</i> , 2019 , 11, 36991-37003	9.5	24
233	High quality, low-oxidized graphene via anodic exfoliation with table salt as an efficient oxidation-preventing co-electrolyte for water/oil remediation and capacitive energy storage applications. <i>Applied Materials Today</i> , 2018 , 11, 246-254	6.6	17
232	A biosupramolecular approach to graphene: Complementary nucleotide-nucleobase combinations as enhanced stabilizers towards aqueous-phase exfoliation and functional graphene-nucleotide hydrogels. <i>Carbon</i> , 2018 , 129, 321-334	10.4	4
231	A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil. <i>Carbon</i> , 2017 , 115, 625-628	10.4	29
230	Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 24085-24099	9.5	74
229	Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid-Base Interactions. <i>ACS Applied Materials & Dicher Stabilized & Dich</i>	9.5	27
228	Efficient Pt electrocatalysts supported onto flavin mononucleotide Exfoliated pristine graphene for the methanol oxidation reaction. <i>Electrochimica Acta</i> , 2017 , 231, 386-395	6.7	19
227	A "Nanopore Lithography" Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. <i>ACS Applied Materials</i> & Samp; Interfaces, 2017, 9, 44740-44755	9.5	28
226	Nitrogen doped mesoporous carbon aerogels and implications for electrocatalytic oxygen reduction reactions. <i>Microporous and Mesoporous Materials</i> , 2016 , 230, 135-144	5.3	29
225	Diffusion of molecular hydrogen in carbon aerogel. <i>Carbon</i> , 2016 , 98, 572-581	10.4	8
224	Grafting of adipic anhydride to carbon nanotubes through a Diels-Alder cycloaddition/oxidation cascade reaction. <i>Carbon</i> , 2016 , 98, 421-431	10.4	12
223	Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. <i>Nanoscale</i> , 2016 , 8, 2982-98	7.7	75
222	Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids. <i>Carbon</i> , 2016 , 105, 474-483	10.4	57
221	Synthesis and properties of TiO2-P2O5 and SiO2-TiO2-P2O5 porous hybrids obtained by templating in highly concentrated emulsions. <i>Ceramics International</i> , 2016 , 42, 18965-18973	5.1	3
220	Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and Biocompatibility of Chemically Exfoliated MoS Nanosheets. <i>ACS Applied Materials & Damp; Interfaces</i> , 2016 , 8, 27974-27986	9.5	56
219	The importance of electrode characterization to assess the supercapacitor performance of ordered mesoporous carbons. <i>Microporous and Mesoporous Materials</i> , 2016 , 235, 1-8	5.3	23

218	High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. <i>Carbon</i> , 2015 , 94, 729-739	10.4	63
217	pH-responsive ordered mesoporous carbons for controlled ibuprofen release. <i>Carbon</i> , 2015 , 94, 152-15	9 10.4	18
216	Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons. <i>Journal of Colloid and Interface Science</i> , 2015 , 450, 91-100	9.3	67
215	Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. ACS Applied Materials & amp; Interfaces, 2015, 7, 10293-307	9.5	85
214	Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 24032-45	9.5	44
213	From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration. <i>Nanoscale</i> , 2015 , 7, 2374-90	7.7	83
212	Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption. <i>Carbon</i> , 2015 , 81, 137-147	10.4	59
211	Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. <i>RSC Advances</i> , 2014 , 4, 14115-14127	3.7	90
210	A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents. <i>Carbon</i> , 2014 , 75, 390-400	10.4	54
209	Influence of porous texture and surface chemistry on the COI dsorption capacity of porous carbons: acidic and basic site interactions. ACS Applied Materials & amp; Interfaces, 2014, 6, 21237-47	9.5	107
208	The solvent effect on the sidewall functionalization of multi-walled carbon nanotubes with maleic anhydride. <i>Carbon</i> , 2014 , 78, 401-414	10.4	3
207	Controlled generation of atomic vacancies in chemical vapor deposited graphene by microwave oxygen plasma. <i>Carbon</i> , 2014 , 79, 664-669	10.4	26
206	Highly efficient silver-assisted reduction of graphene oxide dispersions at room temperature: mechanism, and catalytic and electrochemical performance of the resulting hybrids. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7295-7305	13	25
205	Evolution of the complex surface chemistry in mesoporous carbons obtained from polyaramide precursors. <i>Applied Surface Science</i> , 2014 , 299, 19-28	6.7	18
204	Effects of the mesostructural order on the electrochemical performance of hierarchical microfhesoporous carbons. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12023-12030	13	18
203	Capacitive Behaviours of Phosphorus-Rich Carbons Derived from Lignocelluloses. <i>Electrochimica Acta</i> , 2014 , 137, 219-227	6.7	70
202	Chemically exfoliated MoSIhanosheets as an efficient catalyst for reduction reactions in the aqueous phase. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 21702-10	9.5	99
201	Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. <i>Journal of Alloys and Compounds</i> , 2014 , 583, 60-69	5.7	29

200	Hierarchical micro-mesoporous carbons by direct replication of bimodal aluminosilicate templates. <i>Microporous and Mesoporous Materials</i> , 2014 , 190, 156-164	5.3	7
199	Aromatic polyamides as new precursors of nitrogen and oxygen-doped ordered mesoporous carbons. <i>Carbon</i> , 2014 , 70, 119-129	10.4	53
198	Energy storage on ultrahigh surface area activated carbon fibers derived from PMIA. <i>ChemSusChem</i> , 2013 , 6, 1406-13	8.3	16
197	Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide. <i>Carbon</i> , 2013 , 63, 30-44	10.4	38
196	Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method. <i>Carbon</i> , 2013 , 62, 193-203	10.4	40
195	Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. <i>RSC Advances</i> , 2013 , 3, 18323	3.7	28
194	Discovery of effective solvents for platelet-type graphite nanofibers. <i>Carbon</i> , 2013 , 53, 222-230	10.4	8
193	Tailoring of the interfacial properties of polymeric single fibre-reinforced epoxy composites by non-oxidative plasma treatments. <i>Composites Part A: Applied Science and Manufacturing</i> , 2013 , 50, 102-1	894	11
192	Chemical and structural modifications of carbon nanofibers with different degrees of graphitic order following oxygen plasma treatments. <i>Materials Chemistry and Physics</i> , 2013 , 138, 615-622	4.4	14
191	Towards full repair of defects in reduced graphene oxide films by two-step graphitization. <i>Nano Research</i> , 2013 , 6, 216-233	10	165
190	One-pot endo/exotemplating of hierarchical micro-mesoporous carbons. <i>Carbon</i> , 2013 , 54, 365-377	10.4	12
189	Effects of phosphoric acid as additive in the preparation of activated carbon fibers from poly(p-phenylene benzobisoxazole) by carbon dioxide activation. <i>Journal of Analytical and Applied Pyrolysis</i> , 2012 , 95, 68-74	6	10
188	Synthesis of ordered microfhesoporous carbons by activation of SBA-15 carbon replicas. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 390-396	5.3	44
187	Synthesis and characterization of graphenethesoporous silica nanoparticle hybrids. <i>Microporous and Mesoporous Materials</i> , 2012 , 160, 18-24	5.3	25
186	Influence of plasma surface treatments on kink band formation in PBO fibers during compression.		13
	Journal of Applied Polymer Science, 2012 , 123, 2052-2063	2.9	
185		5. 7	14
185 184	Journal of Applied Polymer Science, 2012, 123, 2052-2063 Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of		

(2011-2012)

182	N-containing carbons from styrenedivinylbenzene copolymer by urea treatment. <i>Applied Surface Science</i> , 2012 , 258, 2410-2415	6.7	7
181	Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. <i>Journal of Alloys and Compounds</i> , 2012 , 536, S532-S537	5.7	64
180	Structural and surface modifications of carbon nanotubes when submitted to high temperature annealing treatments. <i>Journal of Alloys and Compounds</i> , 2012 , 536, S460-S463	5.7	19
179	Comparative XRD, Raman, and TEM Study on Graphitization of PBO-Derived Carbon Fibers. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 257-268	3.8	150
178	Nanostructure evolution in heat-treated porous carbons derived from PBO polymer. <i>Journal of Alloys and Compounds</i> , 2012 , 536, S464-S468	5.7	5
177	Adsorption by Phosphorus-Containing Carbons 2012 , 245-267		6
176	Morphology and adsorption properties of chemically modified MWCNT probed by nitrogen, n-propane and water vapor. <i>Carbon</i> , 2012 , 50, 577-585	10.4	27
175	UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphenethetal nanoparticle hybrids and dye degradation. <i>Carbon</i> , 2012 , 50, 1014-1024	10.4	153
174	Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. <i>Carbon</i> , 2012 , 50, 3184-3194	10.4	81
173	Graphitization of highly porous carbons derived from poly(p-phenylene benzobisoxazole). <i>Carbon</i> , 2012 , 50, 2929-2940	10.4	29
172	Avoiding structure degradation during activation of ordered mesoporous carbons. <i>Carbon</i> , 2012 , 50, 3826-3835	10.4	22
171	High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. <i>Carbon</i> , 2011 , 49, 1653-1662	10.4	403
170	Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. <i>Journal of Materials Chemistry</i> , 2011 , 21, 298-306		154
169	Surface modification of high-performance polymeric fibers by an oxygen plasma. A comparative study of poly(p-phenylene terephthalamide) and poly(p-phenylene benzobisoxazole). <i>Journal of Chromatography A</i> , 2011 , 1218, 3781-90	4.5	7
168	Effect of Plasma Treatments of Bisphenol A Polycarbonate on the Characteristics of Carbon Materials Obtained by Further Pyrolysis. <i>Plasma Processes and Polymers</i> , 2011 , 8, 942-950	3.4	3
167	Global and Local Oxidation Behavior of Reduced Graphene Oxide. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7956-7966	3.8	34
166	Complementary X-ray scattering and high resolution imaging of nanostructure development in thermally treated PBO fibers. <i>Carbon</i> , 2011 , 49, 2960-2970	10.4	17
165	Effect of oxygen plasma treatment of PPTA and PBO fibers on the interfacial properties of single fiber/epoxy composites studied by Raman spectroscopy. <i>Composites Science and Technology</i> , 2011 , 71, 784-790	8.6	49

164	Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments. <i>Journal of Colloid and Interface Science</i> , 2011 , 355, 179-89	9.3	95
163	Activated carbon fibers with a high content of surface functional groups by phosphoric acid activation of PPTA. <i>Journal of Colloid and Interface Science</i> , 2011 , 361, 307-15	9.3	49
162	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010 , 114, 6426-6432	3.8	1065
161	A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. <i>Journal of Colloid and Interface Science</i> , 2010 , 344, 451-9	9.3	31
160	A study of the surface morphology of poly(p-phenylene terephthalamide) chars using scanning probe microscopy. <i>Polymer Degradation and Stability</i> , 2010 , 95, 702-707	4.7	5
159	Determining the thickness of chemically modified graphenes by scanning probe microscopy. <i>Carbon</i> , 2010 , 48, 2657-2660	10.4	37
158	The key role of microtexture in the graphitisation of PBO fibre chars as seen by X-ray scattering and transmission electron microscopy. <i>Carbon</i> , 2010 , 48, 3968-3970	10.4	5
157	Effect of PPTA pre-impregnation with phosphoric acid on the porous texture of carbons prepared by CO2 activation of PPTA chars. <i>Microporous and Mesoporous Materials</i> , 2009 , 119, 284-289	5-3	9
156	Porosity development in chars from thermal degradation of poly(p-phenylene benzobisoxazole). <i>Polymer Degradation and Stability</i> , 2009 , 94, 7-12	4.7	10
155	Porosity development in chars from thermal decomposition of poly(p-phenylene terephthalamide). <i>Polymer Degradation and Stability</i> , 2009 , 94, 1890-1894	4.7	1
154	A possible buckybowl-like structure of zeolite templated carbon. <i>Carbon</i> , 2009 , 47, 1220-1230	10.4	203
153	Atomic Vacancy Engineering of Graphitic Surfaces: Controlling the Generation and Harnessing the Migration of the Single Vacancy. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10249-10255	3.8	31
152	A Combined Experimental and Theoretical Investigation of Atomic-Scale Defects Produced on Graphite Surfaces by Dielectric Barrier Discharge Plasma Treatment. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18719-18729	3.8	11
151	Highly stable performance of supercapacitors from phosphorus-enriched carbons. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5026-7	16.4	514
150	Preparation of graphene dispersions and graphene-polymer composites in organic media. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3591		276
149	Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. <i>Langmuir</i> , 2009 , 25, 5957-68	4	575
148	Overview of Carbon Materials in Relation to Adsorption 2008 , 15-49		5
147	Energetics of Gas Adsorption by Carbons: Thermodynamic Quantities 2008 , 53-76		4

(2006-2008)

146	Impact of the Carbonization Atmosphere on the Properties of Phosphoric Acid-Activated Carbons from Fruit Stones. <i>Adsorption Science and Technology</i> , 2008 , 26, 843-851	3.6	3
145	Tuning of texture and surface chemistry of carbon xerogels. <i>Journal of Colloid and Interface Science</i> , 2008 , 324, 150-5	9.3	76
144	Microporosity and mesoporosity of PPTA-derived carbons. Effect of PPTA thermal pretreatment. <i>Microporous and Mesoporous Materials</i> , 2008 , 114, 185-192	5.3	13
143	Porous texture evolution in activated carbon fibers prepared from poly (p-phenylene benzobisoxazole) by carbon dioxide activation. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 622-6	256 ³	17
142	Modification of the pyrolysis/carbonization of PPTA polymer by intermediate isothermal treatments. <i>Carbon</i> , 2008 , 46, 985-993	10.4	31
141	Activated carbon fibers from poly(p-phenylene benzobisoxazole). <i>Carbon</i> , 2008 , 46, 825-828	10.4	6
140	New atomic-scale features in graphite surfaces treated in a dielectric barrier discharge plasma. <i>Carbon</i> , 2008 , 46, 1364-1367	10.4	6
139	Graphene oxide dispersions in organic solvents. <i>Langmuir</i> , 2008 , 24, 10560-4	4	2195
138	Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite. <i>Langmuir</i> , 2007 , 23, 8932-43	4	49
137	Oxygen and phosphorus enriched carbons from lignocellulosic material. <i>Carbon</i> , 2007 , 45, 1941-1950	10.4	95
136	A comparison of different carbon filaments on the nanometer and atomic scales by scanning tunneling microscopy. <i>Materials Letters</i> , 2007 , 61, 4787-4790	3.3	1
135	Interactions of CO and NO with the perovskite-type oxide larho3. <i>Journal of Chemical Technology and Biotechnology</i> , 2007 , 36, 136-143	3.5	3
134	Real-time monitoring of polymer swelling on the nanometer scale by atomic force microscopy. <i>Langmuir</i> , 2006 , 22, 4728-33	4	15
133	A microscopic view of physical and chemical activation in the synthesis of porous carbons. <i>Langmuir</i> , 2006 , 22, 9730-9	4	9
132	Nitrogen in aramid-based activated carbon fibers by TPD, XPS and XANES. <i>Carbon</i> , 2006 , 44, 2452-2462	10.4	70
131	Imaging the structure and porosity of active carbons by scanning tunneling microscopy. <i>Carbon</i> , 2006 , 44, 2469-2478	10.4	19
130	New structural insights into ordered porous carbon by scanning tunneling microscopy. <i>Microporous and Mesoporous Materials</i> , 2006 , 87, 268-271	5.3	
129	Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors. Journal of Power Sources, 2006 , 153, 419-423	8.9	84

128	Surface characterisation of plasma-modified poly(ethylene terephthalate). <i>Journal of Colloid and Interface Science</i> , 2006 , 293, 353-63	9.3	48
127	Activated Carbon Materials of Uniform Porosity from Polyaramid Fibers. <i>Chemistry of Materials</i> , 2005 , 17, 5893-5908	9.6	68
126	Synthetic Carbons Derived from a StyreneDivinylbenzene Copolymer Using Phosphoric Acid Activation. <i>Adsorption Science and Technology</i> , 2005 , 23, 19-26	3.6	1
125	Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures. <i>Microporous and Mesoporous Materials</i> , 2005 , 77, 109-118	5.3	39
124	Effects of oxygen and carbon dioxide plasmas on the surface of poly(ethylene terephthalate). <i>Journal of Colloid and Interface Science</i> , 2005 , 287, 57-66	9.3	40
123	Nanoscale investigation of the structural and chemical changes induced by oxidation on carbon black surfaces: a scanning probe microscopy approach. <i>Journal of Colloid and Interface Science</i> , 2005 , 288, 190-9	9.3	24
122	A study of the effect of plasma treatment on the interfacial properties of carbon fibre E hermoplastic composites. <i>Carbon</i> , 2005 , 43, 1795-1799	10.4	113
121	Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. <i>Carbon</i> , 2005 , 43, 2857-26	8 6& .4	264
120	Structural investigation of zeolite-templated, ordered microporous carbon by scanning tunneling microscopy and Raman spectroscopy. <i>Langmuir</i> , 2005 , 21, 8817-23	4	30
119	Graphitization of carbon nanofibers: visualizing the structural evolution on the nanometer and atomic scales by scanning tunneling microscopy. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 675-682	2.6	26
118	Thermogravimetric studies on the activation of nanometric carbon fibers. <i>Journal of Thermal Analysis and Calorimetry</i> , 2005 , 79, 525-528	4.1	5
117	Nanoporous carbon fibres by pyrolysis of nomex polyaramid fibres. <i>Journal of Thermal Analysis and Calorimetry</i> , 2005 , 79, 529-532	4.1	24
116	Mechanical properties of high-strength carbon fibres. Validation of an end-effect model for describing experimental data. <i>Carbon</i> , 2004 , 42, 1275-1278	10.4	29
115	Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation. Temperature and time effects. <i>Microporous and Mesoporous Materials</i> , 2004 , 75, 73-80	5.3	29
114	The effect of demineralisation on a lignite surface properties. <i>Fuel</i> , 2004 , 83, 845-850	7.1	17
113	The use of microcalorimetry to assess the size exclusion properties of carbon molecular sieves. <i>Thermochimica Acta</i> , 2004 , 420, 141-144	2.9	13
112	Thermal decomposition of poly(p-phenylene benzobisoxazole) fibres: monitoring the chemical and nanostructural changes by Raman spectroscopy and scanning probe microscopy. <i>Polymer Degradation and Stability</i> , 2004 , 86, 263-268	4.7	18
111	Activated carbon fibers from Nomex by chemical activation with phosphoric acid. <i>Carbon</i> , 2004 , 42, 141	9110426	5 122

110	Ethylene physisorption on C60 fullerene. Carbon, 2004, 42, 1333-1337	10.4	7
109	Effect of Phosphoric Acid on Chemical Transformations during Nomex Pyrolysis. <i>Chemistry of Materials</i> , 2004 , 16, 2639-2647	9.6	28
108	Oxygen plasma modification of pitch-based isotropic carbon fibres. <i>Carbon</i> , 2003 , 41, 41-56	10.4	160
107	Synthetic carbons activated with phosphoric acid III. Carbons prepared in air. <i>Carbon</i> , 2003 , 41, 1181-1	1 91 0.4	123
106	Atomic-scale scanning tunneling microscopy study of plasma-oxidized ultrahigh-modulus carbon fiber surfaces. <i>Journal of Colloid and Interface Science</i> , 2003 , 258, 276-82	9.3	25
105	Application of scanning tunneling and atomic force microscopies to the characterization of microporous and mesoporous materials. <i>Microporous and Mesoporous Materials</i> , 2003 , 65, 93-126	5.3	62
104	Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid. <i>Journal of Analytical and Applied Pyrolysis</i> , 2003 , 70, 779-784	6	134
103	Following changes in the porous texture of Nomex-derived activated carbon fibres with the molecular probe technique. <i>Microporous and Mesoporous Materials</i> , 2003 , 64, 11-19	5.3	10
102	Atomic vacancy-induced friction on the graphite surface: observation by lateral force microscopy. <i>Journal of Microscopy</i> , 2003 , 210, 119-24	1.9	
101	Surface Characterization of PBO Fibers. <i>Macromolecules</i> , 2003 , 36, 8662-8672	5.5	26
100	N2 Physisorption on Carbon Nanotubes: Computer Simulation and Experimental Results. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 8905-8916	3.4	40
99	Studies on the Thermal Degradation of Poly (p-phenylene benzobisoxazole). <i>Chemistry of Materials</i> , 2003 , 15, 4052-4059	9.6	61
98	Detecting Surface Oxygen Groups on Carbon Nanofibers by Phase Contrast Imaging in Tapping Mode AFM. <i>Langmuir</i> , 2003 , 19, 7665-7668	4	11
97	Methods for Characterization of Inorganic and Mineral Matter in Coal: A Critical Overview. <i>Energy & Energy Fuels</i> , 2003 , 17, 271-281	4.1	113
96	A scanning tunnelling microscopy insight into the preparation of carbon molecular sieves by chemical vapour deposition. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1513-1516		10
95	Adsorption of n-alkanes on plasma-oxidized high-strength carbon fibers. <i>Journal of Colloid and Interface Science</i> , 2002 , 247, 290-302	9.3	14
94	Porous texture evolution in Nomex-derived activated carbon fibers. <i>Journal of Colloid and Interface Science</i> , 2002 , 252, 169-76	9.3	38
93	Carbon molecular sieves for air separation from Nomex aramid fibers. <i>Journal of Colloid and Interface Science</i> , 2002 , 254, 414-6	9.3	16

92	Characterization of synthetic carbons activated with phosphoric acid. <i>Applied Surface Science</i> , 2002 , 200, 196-202	6.7	39
91	Pyrolysis of apple pulp: effect of operation conditions and chemical additives. <i>Journal of Analytical and Applied Pyrolysis</i> , 2002 , 62, 93-109	6	60
90	Pyrolysis of apple pulp: chemical activation with phosphoric acid. <i>Journal of Analytical and Applied Pyrolysis</i> , 2002 , 63, 283-301	6	100
89	Composition of gases released during olive stones pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2002 , 65, 313-322	6	107
88	Adsorption of polar probe molecules on plasma-oxidised high-strength carbon fibres. <i>Fuel Processing Technology</i> , 2002 , 77-78, 359-364	7.2	16
87	Beneficial effects of phosphoric acid as an additive in the preparation of activated carbon fibers from Nomex aramid fibers by physical activation. <i>Fuel Processing Technology</i> , 2002 , 77-78, 237-244	7.2	13
86	Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfurfuryl alcohol. <i>Fuel Processing Technology</i> , 2002 , 77-78, 401-407	7.2	12
85	Nanometer structure of carbon fibers studied by different scanning probe microscopy techniques: a comparative investigation. <i>Fuel Processing Technology</i> , 2002 , 77-78, 293-300	7.2	3
84	A comparative study of the thermal decomposition of apple pulp in the absence and presence of phosphoric acid. <i>Polymer Degradation and Stability</i> , 2002 , 75, 375-383	4.7	45
83	Inorganic matter characterization in vegetable biomass feedstocks. <i>Fuel</i> , 2002 , 81, 1161-1169	7.1	63
82	Retention of mercury in activated carbons in coal combustion and gasification flue gases. <i>Fuel Processing Technology</i> , 2002 , 77-78, 353-358	7.2	52
81	Oxygen plasma modification of submicron vapor grown carbon fibers as studied by scanning tunneling microscopy. <i>Carbon</i> , 2002 , 40, 1101-1108	10.4	52
80	Synthetic carbons activated with phosphoric acid. <i>Carbon</i> , 2002 , 40, 1493-1505	10.4	397
79	Synthetic carbons activated with phosphoric acid: II. Porous structure. <i>Carbon</i> , 2002 , 40, 1507-1519	10.4	79
78	Characterization of aramid based activated carbon fibres by adsorption and immersion techniques. <i>Carbon</i> , 2002 , 40, 1376-1380	10.4	26
77	Combining thermal analysis with other techniques to monitor the decomposition of poly(m-phenylene isophthalamide). <i>Magyar Apr\(\mathbb{U}\)ad K\(\mathbb{D}\)lem\(\mathbb{D}\)yek, 2002, 70, 37-43</i>	O	22
76	Fibrous Carbon Molecular Sieves by Chemical Vapor Deposition of Benzene. Gas Separation Ability. <i>Chemistry of Materials</i> , 2002 , 14, 4328-4333	9.6	29
75	Nitrogen Physisorption on Defective C60. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9522-9527	3.4	10

(2000-2002)

74	Surface Characterization of PPTA Fibers Using Inverse Gas Chromatography. <i>Macromolecules</i> , 2002 , 35, 5085-5096	5.5	35
73	Early Stages of Plasma Oxidation of Graphite: Nanoscale Physicochemical Changes As Detected by Scanning Probe Microscopies. <i>Langmuir</i> , 2002 , 18, 4314-4323	4	27
72	Effect of sizing on the surface properties of carbon fibres. <i>Journal of Materials Chemistry</i> , 2002 , 12, 384	43-3850) 12
71	High resolution imaging of functional group distributions on carbon surfaces by tapping mode atomic force microscopy. <i>Chemical Communications</i> , 2002 , 1790-1	5.8	4
70	Preparation and porous texture characteristics of fibrous ultrahigh surface area carbons. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3213-3219		26
69	Studies on pyrolysis of Nomex polyaramid fibers. <i>Journal of Analytical and Applied Pyrolysis</i> , 2001 , 58-59, 105-115	6	63
68	Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. <i>Carbon</i> , 2001 , 39, 1057-1068	10.4	101
67	Carbon reactivity in an oxygen plasma: a comparison with reactivity in molecular oxygen. <i>Carbon</i> , 2001 , 39, 1135-1146	10.4	26
66	Triangular versus honeycomb structure in atomic-resolution STM images of graphite. <i>Carbon</i> , 2001 , 39, 476-479	10.4	20
65	Surface characterization of submicron vapor grown carbon fibers by scanning tunneling microscopy. <i>Carbon</i> , 2001 , 39, 1575-1587	10.4	16
64	Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp. <i>Carbon</i> , 2001 , 39, 1111-1115	10.4	46
63	Characterization of Microporosity and Mesoporosity in Carbonaceous Materials by Scanning Tunneling Microscopy. <i>Langmuir</i> , 2001 , 17, 474-480	4	31
62	Effects of plasma oxidation on the surface and interfacial properties of ultra-high modulus carbon fibres. <i>Composites Part A: Applied Science and Manufacturing</i> , 2001 , 32, 361-371	8.4	115
61	Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers. <i>Chemistry of Materials</i> , 2001 , 13, 4297-4304	9.6	73
60	Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure. <i>Carbon</i> , 2000 , 38, 1021-1029	10.4	60
59	Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation. <i>Carbon</i> , 2000 , 38, 1183-1197	10.4	53
58	Recent developments in the international scenario of coal science. <i>Fuel</i> , 2000 , 79, 1581-1586	7.1	2
57	The international scenario of coal science. <i>Fuel</i> , 2000 , 79, 461-469	7.1	2

56	Adhesion artefacts in atomic force microscopy imaging. <i>Journal of Microscopy</i> , 2000 , 200 (Pt 2), 109-13	1.9	17
55	Effect of some precursor characteristics on the porous texture of activated carbon fibres prepared from Nomex aramid fibres. <i>Microporous and Mesoporous Materials</i> , 2000 , 41, 319-321	5.3	15
54	Microporous texture of activated carbon fibres prepared from Nomex aramid fibres. <i>Microporous and Mesoporous Materials</i> , 2000 , 34, 171-179	5.3	47
53	Mineralogical and chemical characterisation of coals from Southern Chile. <i>International Journal of Coal Geology</i> , 2000 , 44, 85-94	5.5	12
52	Atomic force microscopy investigation of the surface modification of highly oriented pyrolytic graphite by oxygen plasma. <i>Journal of Materials Chemistry</i> , 2000 , 10, 1585-1591		39
51	Physisorption of Simple Gases on C60Fullerene. <i>Langmuir</i> , 2000 , 16, 1343-1348	4	23
50	Shrinkage Properties of Wool Treated with Low Temperature Plasma and Chitosan Biopolymer. <i>Textile Reseach Journal</i> , 1999 , 69, 811-815	1.7	59
49	Modification of the surface properties of an activated carbon by oxygen plasma treatment. <i>Fuel</i> , 1998 , 77, 613-624	7.1	60
48	Effect of Various Treatments on Carbon Fiber Surfaces Studied by Raman Microprobe Spectrometry. <i>Applied Spectroscopy</i> , 1998 , 52, 356-360	3.1	25
47	Fullerene Reactivity in an Oxygen Plasma. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 1997 , 5, 1075-1081		
46	Thermal behaviour of extrographic fractions of coal tar and petroleum pitches. Fuel, 1997 , 76, 179-187	7.1	21
45	Microporous texture of activated carbon fibers prepared from aramid fiber pulp. <i>Microporous Materials</i> , 1997 , 11, 303-311		32
44	Interactions between organic matter and minerals in two bituminous coals of different rank. <i>International Journal of Coal Geology</i> , 1997 , 33, 369-386	5.5	21
43	Zeta Potential as a Tool to Characterize Plasma Oxidation of Carbon Fibers. <i>Journal of Colloid and Interface Science</i> , 1997 , 192, 363-7	9.3	43
42	Chemical transformations resulting from pyrolysis and CO2 activation of Kevlar flocks. <i>Carbon</i> , 1997 , 35, 967-976	10.4	29
41	Thermal behavior of fullerenes in different gas atmospheres. <i>Carbon</i> , 1996 , 34, 1239-1248	10.4	13
40	Characterization of precipitates formed from the tetraiodomercurate (II) anion and mercury(I) or silver(I) cations. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 1217-1221		O

38	Raman microprobe studies on carbon materials. <i>Carbon</i> , 1994 , 32, 1523-1532	10.4	878
37	Characterization of common lignite, xylitic lignite and pyropissite varieties of low-rank coals. <i>Fuel</i> , 1994 , 73, 1723-1728	7.1	4
36	Thermal Transformations of Kevlar Aramid Fibers During Pyrolysis: Infrared and Thermal Analysis Studies. <i>Chemistry of Materials</i> , 1994 , 6, 1918-1924	9.6	70
35	Correlation between Arrhenius kinetic parameters in the reaction of different carbon materials with oxygen. <i>Energy & Description</i> 2, 1141-1145	4.1	22
34	Comparative M\(\text{B}\)sbauer study of the effects of natural weathering and artificial oxidation on iron minerals present in coal. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1993 , 76, 191-194	1.2	9
33	MBsbauer study of the effect of acidic treatment on iron minerals during the demineralization of coals. <i>Hyperfine Interactions</i> , 1992 , 71, 1403-1406	0.8	3
32	Thermoanalytical studies of pitch pyrolysis. <i>Journal of Thermal Analysis</i> , 1992 , 38, 811-819		13
31	Mineral matter in coals of different rank from the Asturian Central basin. Fuel, 1992 , 71, 367-372	7.1	29
30	Nature and mechanism of oxidation reactions occurring during coal chlorination. Fuel, 1992 , 71, 389-39	37.1	1
29	Suitability of thermogravimetry and differential thermal analysis techniques for characterization of pitches. <i>Fuel</i> , 1992 , 71, 611-617	7.1	30
28	Organic affinity of trace elements in Asturian bituminous coals. Fuel, 1992, 71, 909-917	7.1	26
27	Influence of weathering process on the flotation response of coal. <i>Fuel</i> , 1991 , 70, 1391-1397	7.1	17
26	The Determining Role of Mineral Matter on Gasification Reactivities of Brown Coal Chars 1991 , 435-46	0	8
25	Comparative MBsbauer study of the oxidation of pyrite under different conditions. <i>Hyperfine Interactions</i> , 1990 , 58, 2581-2587	0.8	8
24	Interactions between carboxyl groups and inorganic elements in Spanish brown coals. <i>Fuel</i> , 1990 , 69, 362-367	7.1	21
23	Influence of coal chlorination conditions on aliphatic/aromatic selectivity. Fuel, 1990, 69, 867-872	7.1	6
22	The characterization of organomineral components of low-rank coals. <i>Fuel Processing Technology</i> , 1990 , 25, 81-87	7.2	13
21	Structure and catalytic properties of silica-supported Mo-Pr oxide catalysts for propene selective oxidation. <i>Journal of Materials Science</i> , 1990 , 25, 289-295	4.3	1

20	Reactions of coal mineral matter during coal chlorination. Fuel, 1990, 69, 873-877	7.1	5
19	Structure and Reactivity of Perovskite-Type Oxides. <i>Advances in Catalysis</i> , 1989 , 237-328	2.4	310
18	XPS characterization of coal surfaces: Study of aerial oxidation of brown coals. <i>Surface and Interface Analysis</i> , 1988 , 12, 565-571	1.5	31
17	A comparative study of the interactions of NO and CO with LaCrO3. <i>Journal of Molecular Catalysis</i> , 1988 , 45, 355-363		8
16	A comparative thermoanalytical study of low-temperature reactivity of brown coal with dioxygen and radiofrequency-activated oxygen. <i>Thermochimica Acta</i> , 1988 , 134, 333-338	2.9	7
15	Isobutene oxidation on an catalyst. <i>Journal of the Less Common Metals</i> , 1988 , 138, 47-57		8
14	Temperature-programmed desorption study of the interactions of H2, CO and CO2 with LaMnO3. Journal of the Chemical Society Faraday Transactions I, 1987 , 83, 3149		16
13	Selective oxidation of propene on a molybdenum-prasedodymium-bismuth catalyst. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 1419-1424	3.9	22
12	A study of NO and CO interactions with LaMnO3. <i>Journal of Colloid and Interface Science</i> , 1987 , 119, 10	10-9.97	27
11	A comparison of various characterization techniques for low-temperature oxidation of coal. <i>Fuel Processing Technology</i> , 1987 , 15, 245-256	7.2	19
10	AEM, XPS and ISS characterization of catalyst modifications during propene oxidation over a supported mixed oxide catalyst. <i>Surface and Interface Analysis</i> , 1986 , 9, 207-213	1.5	3
9	Catalytic synergy between MoO3 and BiPO4 in N-ethyl formamide dehydration I. Catalytic properties, reducibility, and reoxidizability of mixtures of MoO3 and BiPO4. <i>Journal of Catalysis</i> , 1986 , 97, 287-299	7.3	20
8	Catalytic synergy between MoO3 and BiPO4 in N-ethyl formamide dehydration II. Characterization of mixtures of MoO3 and BiPO4. <i>Journal of Catalysis</i> , 1986 , 97, 300-311	7.3	21
7	Catalytic synergy between MoO3 and BiPO4 in N-ethyl formamide dehydration III. An ESR study of reduction properties of the mixtures of MoO3 and BiPO4. <i>Journal of Catalysis</i> , 1986 , 97, 312-320	7.3	13
6	Surface interactions of NO and CO with LaMO3 oxides. <i>Journal of Catalysis</i> , 1985 , 95, 558-566	7.3	46
5	Enhanced O2 adsorption in the catalytic oxidation of isobutene on a supported Mo?U?O catalyst. Journal of Colloid and Interface Science, 1985, 106, 269-272	9.3	2
4	Physicochemical properties of LaFeO3. Kinetics of reduction and of oxygen adsorption. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1985 , 81, 2399		27
3	Chemisorption and catalysis on LaMO3 oxides. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1985 , 81, 939		102

Infrared spectroscopic study of the adsorption of pyridine, carbon monoxide and carbon dioxide on the perovskite-type oxides LaMO3. *Journal of the Chemical Society Faraday Transactions I*, **1984**, 80, 1089

35

Adsorption of CO2 on the perovskite-type oxide LaCoO3. *Journal of the Chemical Society Faraday Transactions I*, **1981**, 77, 591

46