List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021224/publications.pdf Version: 2024-02-01

LOSEE DALDUS

#	Article	IF	CITATIONS
1	Matrix elements of unitary group generators in many-fermion correlation problem. II. Graphical methods of spin algebras. Journal of Mathematical Chemistry, 2021, 59, 37-71.	0.7	10
2	Matrix elements of unitary group generators in many-fermion correlation problem. III. Green-Gould approach. Journal of Mathematical Chemistry, 2021, 59, 72-118.	0.7	3
3	Matrix elements of unitary group generators in many-fermion correlation problem. I. tensorial approaches. Journal of Mathematical Chemistry, 2021, 59, 1-36.	0.7	12
4	Valence bond approach and Verma bases. Journal of Mathematical Chemistry, 2018, 56, 1595-1630.	0.7	3
5	Externally and internally corrected coupled cluster approaches: an overview. Journal of Mathematical Chemistry, 2017, 55, 477-502.	0.7	29
6	Multireference coupled-cluster approaches to excited states. , 2015, , .		1
7	On the cluster structure of linear-chain fermionic wave functions. Journal of Mathematical Chemistry, 2015, 53, 629-650.	0.7	1
8	CCSD(T) calculations of confined systems: In-crystal polarizabilities of Fâ^', Clâ^', O2 â^', and S2 â^'. Journal of Chemical Physics, 2014, 141, 214303.	1.2	16
9	Unitary group approach to the many-electron correlation problem: spin-dependent operators. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	7
10	Symmetry-breaking in the independent particle model: nature of the singular behavior of Hartree–Fock potentials. Journal of Mathematical Chemistry, 2013, 51, 427-450.	0.7	1
11	Multi-reference state-universal coupled-cluster approaches to electronically excited states. Journal of Chemical Physics, 2011, 134, 214118.	1.2	23
12	Multireference coupled-cluster study of the symmetry breaking in the C2B radical. Journal of Chemical Physics, 2011, 134, 074301.	1.2	4
13	Model space incompleteness in multireference state-universal and state-selective coupled-cluster theories. Chemical Physics Letters, 2010, 496, 183-187.	1.2	29
14	Multireference coupledâ€cluster methods for ground and lowâ€lying excited states. A benchmark illustration on CH ⁺ potentials. International Journal of Quantum Chemistry, 2010, 110, 2734-2743.	1.0	13
15	Multireference Coupled-Cluster Methods: Recent Developments. Challenges and Advances in Computational Chemistry and Physics, 2010, , 455-489.	0.6	36
16	QCI and related CC approaches: a retrospection. Molecular Physics, 2010, 108, 2941-2950.	0.8	10
17	Performance of multireference and equation-of-motion coupled-cluster methods for potential energy surfaces of low-lying excited states: Symmetric and asymmetric dissociation of water. Journal of Chemical Physics, 2010, 133, 024102.	1.2	8
18	Multireference general-model-space state-universal and state-specific coupled-cluster approaches to excited states. Journal of Chemical Physics, 2010, 133, 184106.	1.2	38

#	Article	IF	CITATIONS
19	A Multireference Coupled-Cluster Study of Electronic Excitations in Furan and Pyrrole ^{â€} . Journal of Physical Chemistry A, 2010, 114, 8591-8600.	1.1	23
20	Accounting for the exact degeneracy and quasidegeneracy in the automerization of cyclobutadiene via multireference coupled-cluster methods. Journal of Chemical Physics, 2009, 131, 114103.	1.2	46
21	Symmetry breaking in spinâ€restricted, openâ€shell Hartree–Fock wave functions. International Journal of Quantum Chemistry, 2009, 109, 1756-1765.	1.0	10
22	Energetics of 1, <i>n</i> â€didehydroâ€polyene diradicals and performance of reduced multireference coupledâ€cluster method. International Journal of Quantum Chemistry, 2009, 109, 3305-3314.	1.0	5
23	Symmetry breaking in spin-restricted Hartree–Fock solutions: the case of the C2 molecule and the N2+ and F2+ cations. Physical Chemistry Chemical Physics, 2009, 11, 5281.	1.3	17
24	Do independent-particle-model broken-symmetry solutions contain more physics than the symmetry-adapted ones? The case of homonuclear diatomics. Journal of Chemical Physics, 2009, 130, 084110.	1.2	21
25	The Energy Level Structure of Low-dimensional Multi-electron Quantum Dots. Advances in Quantum Chemistry, 2009, , 177-201.	0.4	15
26	Analysis and classification of symmetry breaking in linear ABA-type triatomics. Journal of Chemical Physics, 2009, 130, 164116.	1.2	8
27	Approximate symmetry-breaking in the independent particle model of monocyclic completely conjugated polyenes. Journal of Mathematical Chemistry, 2008, 44, 88-120.	0.7	9
28	Coupledâ€cluster approach to spontaneous symmetry breaking in molecules: The linear N ₃ radical. International Journal of Quantum Chemistry, 2008, 108, 2117-2127.	1.0	14
29	On the significance of quadrupiy excited clusters in coupled-cluster calculations for the low-lying states of BN and <mml:math altimg="si70.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>1.2 bw><mml:< td=""><td>26 mn>2</td></mml:<></td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	1.2 bw> <mml:< td=""><td>26 mn>2</td></mml:<>	26 mn>2
30	Independent particle model of spontaneous symmetry breaking in planar π-electron systems. European Physical Journal D, 2008, 46, 453-461.	0.6	4
31	Full potential energy curve for N2 by the reduced multireference coupled-cluster method. Journal of Chemical Physics, 2008, 129, 054104.	1.2	69
32	REDUCED MULTIREFERENCE COUPLED-CLUSTER METHOD AND ITS APPLICATION TO THE PYRIDYNE DIRADICALS. Journal of Theoretical and Computational Chemistry, 2008, 07, 805-820.	1.8	18
33	Partially linearized, fully size-extensive, and reduced multireference coupled-cluster methods. I. Formalism and mutual relationship. Journal of Chemical Physics, 2008, 128, 144118.	1.2	25
34	Partially linearized, fully size-extensive, and reduced multireference coupled-cluster methods. II. Applications and performance. Journal of Chemical Physics, 2008, 128, 144119.	1.2	30
35	Nondynamic Correlation and Coupled-Cluster Methods. AIP Conference Proceedings, 2008, , .	0.3	0
36	Binding in transition metal complexes: Reduced multireference coupled-cluster study of the MCH2+ (M=Sc to Cu) compounds. Journal of Chemical Physics, 2007, 126, 234303.	1.2	24

#	Article	IF	CITATIONS
37	Real or artifactual symmetry breaking in the BNB radical: A multireference coupled cluster viewpoint. Journal of Chemical Physics, 2007, 126, 224304.	1.2	37
38	A Critical Assessment of Coupled Cluster Method in Quantum Chemistry. Advances in Chemical Physics, 2007, , 1-175.	0.3	285
39	Reduced Multireference Coupled-Cluster Method:  Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions. Journal of Physical Chemistry A, 2007, 111, 11189-11197.	1.1	16
40	Hartree-Fock Stability and Broken Symmetry Solutions of O2- and S2- Anions in External Confinement. Collection of Czechoslovak Chemical Communications, 2007, 72, 197-222.	1.0	10
41	A truncated version of reduced multireference coupled-cluster method with singles and doubles and noniterative triples: Application to F2 and Ni(CO)n (n=1, 2, and 4). Journal of Chemical Physics, 2006, 125, 164107.	1.2	43
42	General-model-space state-universal coupled-cluster methods for excited states: Diagonal noniterative triple corrections. Journal of Chemical Physics, 2006, 124, 034112.	1.2	60
43	Reduced multireference coupled cluster method with singles and doubles: Perturbative corrections for triples. Journal of Chemical Physics, 2006, 124, 174101.	1.2	84
44	Diagonal perturbative triple corrections to the generalâ€modelâ€space stateâ€universal coupledâ€cluster method: Are they warranted and useful?. Molecular Physics, 2006, 104, 2047-2062.	0.8	6
45	General-model-space state-universal coupled-cluster method: excitation energies of water. Molecular Physics, 2006, 104, 661-676.	0.8	25
46	Singlet–triplet separation in BN and C2: Simple yet exceptional systems for advanced correlated methods. Chemical Physics Letters, 2006, 431, 179-184.	1.2	40
47	Angular Momentum Diagrams. Advances in Quantum Chemistry, 2006, , 59-123.	0.4	15
48	Diagonal perturbative triple corrections to the general-model-space state-universal coupled-cluster method: are they warranted and useful?. Molecular Physics, 2006, 104, 2047-2062.	0.8	16
49	Recursive generation of natural orbitals in a truncated orbital space. International Journal of Quantum Chemistry, 2005, 105, 672-678.	1.0	6
50	Multi-reference Brillouin–Wigner coupled-cluster method with a general model space. Molecular Physics, 2005, 103, 2239-2245.	0.8	49
51	The beginnings of coupled-cluster theory. , 2005, , 115-147.		52
52	Can We Avoid the Intruder-State Problems in the State-Universal Coupled-Cluster Approaches While Preserving Size Extensivity?. Collection of Czechoslovak Chemical Communications, 2004, 69, 90-104.	1.0	24
53	General-Model-Space State–Universal Coupled-Cluster Method: Diagrammatic Approach. Journal of Mathematical Chemistry, 2004, 35, 215-251.	0.7	25
54	Size extensivity of a general-model-space state-universal coupled-cluster method. International Journal of Quantum Chemistry, 2004, 99, 914-924.	1.0	38

#	Article	IF	CITATIONS
55	Performance of the general-model-space state-universal coupled-cluster method. Journal of Chemical Physics, 2004, 120, 5890-5902.	1.2	69
56	General-model-space state-universal coupled-cluster theory: Connectivity conditions and explicit equations. Journal of Chemical Physics, 2003, 119, 5320-5333.	1.2	141
57	The general-model-space state-universal coupled-cluster method exemplified by the LiH molecule. Journal of Chemical Physics, 2003, 119, 5346-5357.	1.2	87
58	N-reference, M-state coupled-cluster method: Merging the state-universal and reduced multireference coupled-cluster theories. Journal of Chemical Physics, 2003, 119, 5334-5345.	1.2	69
59	Analysis of the multireference state-universal coupled-clusterAnsatz. Journal of Chemical Physics, 2003, 118, 6769-6783.	1.2	48
60	COUPLED-CLUSTER APPROACH TO CORRELATION IN SMALL MOLECULES: ENERGY VERSUS AMPLITUDE CORRECTED METHODS. International Journal of Modern Physics B, 2003, 17, 5379-5391.	1.0	3
61	Symmetry Breaking in the Independent Particle Model. , 2003, , 67-139.		39
62	Simultaneous Account of Dynamic and Nondynamic Correlations Based on Complementarity of CI and CC Approaches. ACS Symposium Series, 2002, , 10-30.	0.5	12
63	Energy- versus amplitude-corrected coupled-cluster approaches. III. Accurate computation of spectroscopic data exemplified on the HF molecule. Journal of Chemical Physics, 2002, 117, 1941-1955.	1.2	39
64	COUPLED-CLUSTER APPROACH TO CORRELATION IN SMALL MOLECULES: ENERGY <i>VS.</i> AMPLITUDE CORRECTED METHODS. , 2002, , .		0
65	Energy versus amplitude corrected coupled-cluster approaches. I. Journal of Chemical Physics, 2001, 115, 5759-5773.	1.2	49
66	Energy versus amplitude corrected coupled-cluster approaches. II. Breaking the triple bond. Journal of Chemical Physics, 2001, 115, 5774-5783.	1.2	78
67	Approximate Coupled Cluster Methods: Combined Reduced Multireference and Almost–Linear Coupled Cluster Methods with Singles and Doubles 11This paper is dedicated to Professor Giuseppe Del Re at the occasion of his 65th anniversary Advances in Quantum Chemistry, 2000, 36, 231-251.	0.4	18
68	Algebraic solutions for point groups: Cubic groupsG in the group chainG?T?D2?C2. International Journal of Quantum Chemistry, 2000, 76, 585-599.	1.0	5
69	Effect of spin contamination on the prediction of barrier heights by coupled-cluster theory: F+H2?HF+H reaction. International Journal of Quantum Chemistry, 2000, 77, 281-290.	1.0	17
70	Reciprocal adjustment of approximate coupled cluster and configuration interaction approaches. International Journal of Quantum Chemistry, 2000, 77, 693-703.	1.0	18
71	Truncated version of the reduced multireference coupled-cluster method with perturbation selection of higher than pair clusters. International Journal of Quantum Chemistry, 2000, 80, 743-756.	1.0	42
72	Direct iterative solution of the generalized Bloch equation. V. Application to N2. International Journal of Quantum Chemistry, 2000, 80, 782-798.	1.0	9

#	Article	IF	CITATIONS
73	Unitary group based coupled cluster method for open-shell singlets: application to the a1î" state of OH+. Computational and Theoretical Chemistry, 2000, 527, 165-172.	1.5	4
74	Reduced multireference coupled cluster method IV: open-shell systems. Molecular Physics, 2000, 98, 1185-1199.	0.8	70
75	Reduced multireference coupled cluster method: Ro-vibrational spectra of N2. Journal of Chemical Physics, 2000, 113, 9966-9977.	1.2	91
76	Direct iterative solution of the generalized Bloch equation. II. A general formalism for many-electron systems. Journal of Chemical Physics, 2000, 113, 2594-2611.	1.2	19
77	Direct iterative solution of the generalized Bloch equation. IV. Application to H2, LiH, BeH, and CH2. Journal of Chemical Physics, 2000, 113, 2622-2637.	1.2	21
78	Direct iterative solution of the generalized Bloch equation. III. Application to H2-cluster models. Journal of Chemical Physics, 2000, 113, 2612-2621.	1.2	15
79	Truncated version of the reduced multireference coupledâ€cluster method with perturbation selection of higher than pair clusters. International Journal of Quantum Chemistry, 2000, 80, 743-756.	1.0	2
80	Perturbatively selected CI as an optimal source for externally corrected CCSD. Journal of Chemical Physics, 1999, 110, 11708-11716.	1.2	31
81	Size dependence of theX1Ag?11Bu excitation energy in linear polyenes. International Journal of Quantum Chemistry, 1999, 74, 177-192.	1.0	12
82	Electron Correlation in Small Molecules: Grafting CI onto CC. Topics in Current Chemistry, 1999, , 1-20.	4.0	31
83	Simultaneous handling of dynamical and nondynamical correlation via reduced multireference coupled cluster method: Geometry and harmonic force field of ozone. Journal of Chemical Physics, 1999, 110, 2844-2852.	1.2	102
84	Dissociation of N2 triple bond: a reduced multireference CCSD study. Chemical Physics Letters, 1998, 286, 145-154.	1.2	90
85	Unitary-group-based open-shell coupled-cluster method with corrections for connected triexcited clusters. I. Theory. International Journal of Quantum Chemistry, 1998, 70, 65-75.	1.0	10
86	Externally corrected singles and doubles coupled cluster methods for open-shell systems. II. Applications to the low lying doublet states of OH, NH2, CH3 and CN radicals. Molecular Physics, 1998, 94, 235-248.	0.8	35
87	Reduced multireference couple cluster method. II. Application to potential energy surfaces of HF, F2, and H2O. Journal of Chemical Physics, 1998, 108, 637-648.	1.2	158
88	Singlet-Triplet Splitting in Methylene: An Accurate Description of Dynamic and Nondynamic Correlation by Reduced Multireference Coupled Cluster Method. Collection of Czechoslovak Chemical Communications, 1998, 63, 1381-1393.	1.0	43
89	Unitary group based open-shell coupled cluster method with corrections for connected triexcited clusters. II. Applications. Molecular Physics, 1998, 94, 41-54.	0.8	14
90	Reduced multireference CCSD method: An effective approach to quasidegenerate states. Journal of Chemical Physics, 1997, 107, 6257-6269.	1.2	253

#	Article	IF	CITATIONS
91	Externally corrected singles and doubles coupled cluster methods for open-shell systems. Journal of Chemical Physics, 1997, 107, 90-98.	1.2	86
92	UNITARY GROUP BASED COUPLED CLUSTER METHODS AND CALCULATION OF MOLECULAR PROPERTIES. Recent Advances in Computational, 1997, , 183-219.	0.8	14
93	Title is missing!. Journal of Mathematical Chemistry, 1997, 21, 51-70.	0.7	13
94	Single-reference CCSD approach employing three- and four-body CAS SCF corrections: A preliminary study of a simple model. International Journal of Quantum Chemistry, 1997, 62, 137-151.	1.0	58
95	Estimates of the structure and dimerization energy of polyacetylene from ab initio calculations on finite polyenes. International Journal of Quantum Chemistry, 1997, 63, 345-360.	1.0	24
96	Calculation of static molecular properties in the framework of the unitary group based coupled cluster approach. Canadian Journal of Chemistry, 1996, 74, 918-930.	0.6	19
97	Bond length alternation in cyclic polyenes. VII. Valence bond theory approach. International Journal of Quantum Chemistry, 1996, 60, 513-527.	1.0	13
98	Molecular quadrupole moment functions of HF and N2. I.Abinitiolinearâ€response coupledâ€cluster results. Journal of Chemical Physics, 1996, 104, 4699-4715.	1.2	79
99	Molecular quadrupole moment functions of HF and N2. II. Rovibrational effects. Journal of Chemical Physics, 1996, 104, 4716-4727.	1.2	20
100	Molecular quadrupole moment function of ammonia. Journal of Chemical Physics, 1996, 105, 11068-11074.	1.2	18
101	Orthogonally spinâ€∎dapted singleâ€reference coupledâ€cluster formalism: Linear response calculation of higherâ€order static properties. Journal of Chemical Physics, 1996, 104, 8566-8585.	1.2	50
102	A unitary group based openâ€shell coupled cluster study of vibrational frequencies in ground and excited states of first row diatomics. Journal of Chemical Physics, 1996, 104, 9555-9562.	1.2	36
103	Approximate account of connected quadruply excited clusters in single-reference coupled-cluster theory via cluster analysis of the projected unrestricted Hartree-Fock wave function. Physical Review A, 1996, 54, 1210-1241.	1.0	115
104	Perturbation expansion of the ground-state energy for the one-dimensional cyclic Hubbard system in the Hückel limit. International Journal of Quantum Chemistry, 1995, 53, 457-466.	1.0	10
105	Coupled-Cluster approaches with an approximate account of triply and quadruply excited clusters: Implementation of the orthogonally spin-adaptedCCD +ST(CCD),CCSD +T(CCSD), andACPQ +ST(ACPQ) formalisms. International Journal of Quantum Chemistry, 1995, 55, 133-146.	1.0	48
106	Unitary group approach to spin-adapted open-shell coupled cluster theory. International Journal of Quantum Chemistry, 1995, 56, 129-155.	1.0	75
107	Unitary group based openâ€shell coupled cluster approach and triplet and openâ€shell singlet stabilities of Hartree–Fock references. Journal of Chemical Physics, 1995, 103, 6536-6547.	1.2	27
108	Orthogonally spinâ€adapted singleâ€reference coupledâ€cluster formalism: Linear response calculation of static properties. Journal of Chemical Physics, 1995, 102, 6511-6524.	1.2	55

#	Article	IF	CITATIONS
109	Unitary group based stateâ€selective coupled luster method: Comparison of the first order interacting space and the full single and double excitation space approximations. Journal of Chemical Physics, 1995, 102, 8897-8905.	1.2	37
110	Unitary group based state specific openâ€shellâ€singlet coupled luster method: Application to ozone and comparison with Hilbert and Fock space theories. Journal of Chemical Physics, 1995, 102, 8059-8070.	1.2	30
111	Comparison of the openâ€shell stateâ€universal and stateâ€selective coupledâ€cluster theories: H4 and H8 models. Journal of Chemical Physics, 1995, 103, 1024-1034.	1.2	43
112	Spinâ€adapted openâ€shell stateâ€selective coupled cluster approach and doublet stability of its Hartree–Fock reference. Journal of Chemical Physics, 1995, 102, 2013-2023.	1.2	40
113	Orthogonally spinâ€adapted stateâ€universal coupledâ€cluster formalism: Implementation of the complete twoâ€reference theory including cubic and quartic coupling terms. Journal of Chemical Physics, 1994, 101, 5875-5890.	1.2	112
114	Automation of the implementation of spinâ€adapted openâ€shell coupledâ€cluster theories relying on the unitary group formalism. Journal of Chemical Physics, 1994, 101, 8812-8826.	1.2	160
115	Applicability of valenceâ€universal multireference coupledâ€cluster theories to quasidegenerate electronic states. II. Models involving threeâ€body amplitudes. Journal of Chemical Physics, 1994, 101, 3085-3095.	1.2	48
116	Quasi-Spin and the pseudo-orthogonal group in the hubbard model. International Journal of Quantum Chemistry, 1994, 50, 207-231.	1.0	7
117	Evaluation of group theoretical characteristics using the symbolic manipulation language MAPLE. International Journal of Quantum Chemistry, 1994, 52, 139-154.	1.0	4
118	Valence bond corrected single reference coupled cluster approach. Theoretica Chimica Acta, 1994, 89, 13-31.	0.9	107
119	Valence bond corrected single reference coupled cluster approach. Theoretica Chimica Acta, 1994, 89, 33-57.	0.9	54
120	Valence bond corrected single reference coupled cluster approach. Theoretica Chimica Acta, 1994, 89, 59-76.	0.9	66
121	Computation of ionization potentials using the unitary group based open-shell coupled-cluster theory. Chemical Physics Letters, 1994, 231, 1-8.	1.2	14
122	Algebraic Approach to Coupled Cluster Theory. NATO ASI Series Series B: Physics, 1994, , 207-282.	0.2	80
123	Valence bond corrected single reference coupled cluster approach. Theoretica Chimica Acta, 1994, 89, 13-31.	0.9	17
124	Valence bond corrected single reference coupled cluster approach. Theoretica Chimica Acta, 1994, 89, 33-57.	0.9	7
125	Multiconfigurational spin-adapted single-reference coupled cluster formalism. International Journal of Quantum Chemistry, 1993, 48, 269-285.	1.0	30
126	Unitary group tensor operator algebras for many-electron systems. III. Matrix elements in U(n 1 +n 2) ? U(n 1) � U(n 2) partitioned basis. Journal of Mathematical Chemistry, 1993, 14, 325-355.	0.7	8

#	Article	IF	CITATIONS
127	Unitary group tensor operator algebras for many-electron systems: II. One- and two-body matrix elements. Journal of Mathematical Chemistry, 1993, 13, 273-316.	0.7	17
128	Unitary group approach to reduced density matrices. Theoretica Chimica Acta, 1993, 86, 83-96.	0.9	11
129	Application of Hilbert-space coupled-cluster theory to simple (H2)2model systems: Planar models. Physical Review A, 1993, 47, 2738-2782.	1.0	217
130	Unitary Group Approach to Valence Bond and Coupled Cluster Methods. , 1993, , 573-591.		21
131	Applicability of valenceâ€universal multireference coupledâ€cluster theories to quasidegenerate electronic states. I. Models involving at most twoâ€body amplitudes. Journal of Chemical Physics, 1992, 97, 7600-7612.	1.2	72
132	Lie algebraic approach to valence bond theory of π-electron systems: a preliminary study of excited states. AIP Conference Proceedings, 1992, , .	0.3	6
133	Valence bond approach exploiting Clifford algebra realization of Rumer-Weyl basis. International Journal of Quantum Chemistry, 1992, 41, 117-146.	1.0	35
134	Electron correlation in one dimension: Coupled cluster approaches to cyclic polyene ?-electron models. International Journal of Quantum Chemistry, 1992, 42, 135-164.	1.0	43
135	Behavior of coupled cluster energy in the strongly correlated limit of the cyclic polyene model. Comparison with the exact results. International Journal of Quantum Chemistry, 1992, 42, 165-191.	1.0	22
136	Orthogonally spin-adapted multi-reference Hilbert space coupled-cluster formalism: diagrammatic formulation. Theoretica Chimica Acta, 1992, 83, 69-103.	0.9	117
137	Coupled Cluster Theory. NATO ASI Series Series B: Physics, 1992, , 99-194.	0.2	168
138	PPPâ€VB Theory of Ï€â€Electron Systems: Electron Delocalization, Molecular Symmetry, and Resonance. Israel Journal of Chemistry, 1991, 31, 351-362.	1.0	21
139	Relationship between Lieb and Wu Approach and Standard Configuration Interaction Method for the B ^{â^'} _{2u} State of the Hubbard Model of Benzene. Israel Journal of Chemistry, 1991, 31, 423-426.	1.0	4
140	Valence bond approach to the Pariser-Parr-Pople Hamiltonian and its application to simple π-electron systems. Computational and Theoretical Chemistry, 1991, 229, 249-278.	1.5	38
141	On the solution of coupled-cluster equations in the fully correlated limit of cyclic polyene model. International Journal of Quantum Chemistry, 1991, 40, 9-34.	1.0	39
142	Method of moments approach and coupled cluster theory. Theoretica Chimica Acta, 1991, 80, 223-243.	0.9	60
143	Applicability of multi-reference many-body perturbation theory to the determination of potential energy surfaces: A model study. International Journal of Quantum Chemistry, 1990, 38, 761-778.	1.0	66
144	Explicit algebraic form of coupled cluster equations for thePPP model of benzene with an approximate inclusion of triexcited clusters. International Journal of Quantum Chemistry, 1990, 38, 831-851.	1.0	9

#	Article	IF	CITATIONS
145	Coupled cluster approaches with an approximate account of triexcitations and the optimized inner projection technique. Theoretica Chimica Acta, 1990, 78, 65-128.	0.9	107
146	Unitary group tensor operator algebras for many-electron systems: I. Clebsch-Gordan and Racah coefficients. Journal of Mathematical Chemistry, 1990, 4, 295-353.	0.7	19
147	Coupled cluster approach or quadratic–configuration interaction?: Reply to comment by Pople, Headâ€Gordon, and Raghavachari. Journal of Chemical Physics, 1990, 93, 1485-1486.	1.2	34
148	Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. II. Coupled-cluster results for cyclic-polyene model systems. Physical Review B, 1990, 42, 3351-3379.	1.1	65
149	Unitary group approach to reduced density matrices. Journal of Chemical Physics, 1990, 93, 4142-4153.	1.2	33
150	Spinâ€dependent unitary group approach. I. General formalism. Journal of Chemical Physics, 1990, 92, 7394-7401.	1.2	53
151	Relationship between SN and U(n) isoscalar factors and higherâ€order U(n) invariants. Journal of Mathematical Physics, 1990, 31, 1589-1599.	0.5	16
152	Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. III. Lower bounds to the ground-state correlation energy of cyclic-polyene model systems. Physical Review A, 1990, 42, 5155-5167.	1.0	18
153	Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function. Journal of Chemical Physics, 1989, 90, 2714-2731.	1.2	214
154	Clifford algebra realization of Rumer-Weyl basis. Computational and Theoretical Chemistry, 1989, 199, 85-101.	1.5	27
155	Vectorizable approach to molecular CI problems using determinantal basis. Chemical Physics Letters, 1989, 155, 183-188.	1.2	98
156	Spin adaptation of antisymmetrized geminal product wave functions. International Journal of Quantum Chemistry, 1989, 36, 35-48.	1.0	4
157	Explicit representation of Gel'fand-Tsetlin states in clifford algebra unitary group approach. International Journal of Quantum Chemistry, 1989, 36, 127-140.	1.0	16
158	Orthogonally spin-adapted coupled-cluster equations involving singly and doubly excited clusters. Comparison of different procedures for spin-adaptation. International Journal of Quantum Chemistry, 1989, 36, 429-453.	1.0	118
159	Coupled cluster approach or quadratic configuration interaction?. Journal of Chemical Physics, 1989, 90, 4356-4362.	1.2	123
160	Clifford algebra and unitary group formulations of the many-electron problem. Theoretica Chimica Acta, 1988, 73, 81-103.	0.9	139
161	Convergence radii of the perturbation expansions for the ground-state energies of finite Hubbard models. International Journal of Quantum Chemistry, 1988, 34, 407-415.	1.0	16
162	Spinâ€adapted multireference coupled luster approach: Linear approximation for two closedâ€shellâ€ŧype reference configurations. Journal of Chemical Physics, 1988, 88, 5673-5687.	1.2	235

#	Article	IF	CITATIONS
163	Lie Algebraic Approach to the Many-Electron Correlation Problem. The IMA Volumes in Mathematics and Its Applications, 1988, , 262-299.	0.5	47
164	Parastatistics and the Clifford algebra unitary group approach to the manyâ€electron correlation problem. Journal of Mathematical Physics, 1987, 28, 2304-2309.	0.5	16
165	Clifford algebra unitary-group approach to many-electron system partitioning. Physical Review A, 1987, 35, 3197-3217.	1.0	50
166	Point group symmetry adaptation in clifford algebra unitary group approach. International Journal of Quantum Chemistry, 1987, 32, 133-147.	1.0	8
167	Timeâ€dependent coupled cluster approach: Excitation energy calculation using an orthogonally spinâ€adapted formalism. Journal of Chemical Physics, 1986, 85, 1486-1501.	1.2	126
168	Instabilities of Hartree-Fock solutions for cyclic six-centre 10Ï€ heteronuclear networks. Chemical Physics, 1986, 103, 43-53.	0.9	13
169	Unitary group approach to general system partitioning. I. Calculation ofU(n=n1+n2):U(n1) ×u(n2) reduced matrix elements and reduced wigner coefficients. International Journal of Quantum Chemistry, 1986, 30, 327-363.	1.0	24
170	Para-Fermi algebras and the many-electron correlation problem. Physical Review A, 1986, 34, 804-814.	1.0	13
171	Determination of the radius of convergence of the perturbation expansion using Padé approximants: Application to the Hückel limit of the Hubbard model for finite cyclic polyenes. Physical Review B, 1986, 33, 1203-1205.	1.1	7
172	Generalized Dirac identities and explicit relations between the permutational symmetry and the spin operators for systems of identical particles. International Journal of Quantum Chemistry, 1985, 28, 181-202.	1.0	16
173	Bond length alternation in cyclic polyenes. VI. Coupled cluster approach with wannier orbital basis. International Journal of Quantum Chemistry, 1985, 28, 459-479.	1.0	52
174	Applicability of nondegenerate many-body perturbation theory to quasi-degenerate electronic states. II. A two-state model. International Journal of Quantum Chemistry, 1985, 28, 525-534.	1.0	50
175	Coupled-cluster approach to electron correlation in one dimension. II. Cyclic polyene model in localized basis. Physical Review B, 1985, 31, 5121-5142.	1.1	78
176	Spinor group and its restrictions. Journal of Mathematical Physics, 1985, 26, 1140-1145.	0.5	25
177	Clifford algebra unitary group approach to manyâ€electron correlation problem. Journal of Chemical Physics, 1985, 83, 5135-5152.	1.2	84
178	Hartree–Fock instabilities in the trisulphur–trinitride anion. Canadian Journal of Chemistry, 1985, 63, 1797-1802.	0.6	14
179	Alternancy symmetry: A unified viewpoint. Journal of Chemical Physics, 1985, 83, 1722-1735.	1.2	51
180	Hartree–Fock stability and symmetry breaking: oxygen doubly negative ion. Canadian Journal of Chemistry, 1985, 63, 1803-1811.	0.6	37

11

#	Article	IF	CITATIONS
181	Approximate account of the connected quadruply excited clusters in the coupled-pair many-electron theory. Physical Review A, 1984, 30, 2193-2209.	1.0	192
182	Coupled-cluster approach to electron correlation in one dimension: Cyclic polyene model in delocalized basis. Physical Review B, 1984, 30, 4267-4291.	1.1	117
183	Spin properties of radicaloid alternant hydrocarbons. Exact solutions for representative Pariser–Parr–Pople model systems. Journal of Chemical Physics, 1984, 80, 2244-2246.	1.2	33
184	Bond length alternation in cyclic polyenes. IV. Finite-order purturbation theory approach. International Journal of Quantum Chemistry, 1984, 25, 423-443.	1.0	41
185	Bond length alternation in cyclic polyenes. V. Local finite-order perturbation theory approach. International Journal of Quantum Chemistry, 1984, 26, 349-371.	1.0	34
186	Degeneracy and coupled-cluster approaches. International Journal of Quantum Chemistry, 1984, 26, 237-244.	1.0	48
187	Bond-length alternation and vibrational spectra of polyacetylene. Canadian Journal of Physics, 1984, 62, 1226-1231.	0.4	12
188	Applicability of non-degenerate many-body perturbation theory to quasidegenerate electronic states: A model study. International Journal of Quantum Chemistry, 1983, 23, 1781-1802.	1.0	65
189	Bond length alternation in cyclic polyenes. I. Restricted Hartree-Fock method. International Journal of Quantum Chemistry, 1983, 24, 373-394.	1.0	84
190	Bond length alternation in cyclic polyenes. II. Unrestricted hartree-fock method. International Journal of Quantum Chemistry, 1983, 24, 395-409.	1.0	51
191	Bond length alternation in cyclic polyenes. III. Alternant molecular orbital method. International Journal of Quantum Chemistry, 1983, 24, 411-423.	1.0	33
192	Perturbation theory and electron correlation in extended systems: Cyclic polyene model. International Journal of Quantum Chemistry, 1983, 24, 707-727.	1.0	40
193	Relationship between configuration interaction and coupled cluster approaches. Journal of Chemical Physics, 1982, 76, 2458-2470.	1.2	78
194	Numerical estimates of the convergence of the Rayleigh-SchrĶdinger perturbation expansions for the energy levels of various models of the benzene molecule. International Journal of Quantum Chemistry, 1982, 21, 147-151.	1.0	19
195	Representation theory ofso(4,2) for the perturbation treatment of hydrogenic-type hamiltonians by algebraic methods. International Journal of Quantum Chemistry, 1982, 21, 153-171.	1.0	42
196	Cluster analysis of the full configuration interaction wave functions of cyclic polyene models. International Journal of Quantum Chemistry, 1982, 22, 1281-1305.	1.0	81
197	Symmetry-adapted coupled-pair approach to the many-electron correlation problem. I.LS-adapted theory for closed-shell atoms. Physical Review A, 1981, 24, 2302-2315.	1.0	32
198	Symmetry-adapted coupled-pair approach to the many-electron correlation problem. III. Approximate coupled-pair approaches for the Be atom. Physical Review A, 1981, 24, 2330-2338.	1.0	56

#	Article	IF	CITATIONS
199	Symmetry-adapted coupled-pair approach to the many-electron correlation problem. II. Application to the Be atom. Physical Review A, 1981, 24, 2316-2329.	1.0	61
200	Unitary Group Approach to Many-Electron Correlation Problem. Lecture Notes in Quantum Chemistry II, 1981, , 1-50.	0.3	57
201	Configuration interaction matrix elements. III. Spin functions relating the unitary and symmetric group approaches. International Journal of Quantum Chemistry, 1980, 18, 841-866.	1.0	21
202	Applicability of coupled-pair theories to quasidegenerate electronic states: A model study. International Journal of Quantum Chemistry, 1980, 18, 1243-1269.	1.0	310
203	Unitary Group Approach to the Many-Electron Correlation Problem via Graphical Methods of Spin Algebras. Physica Scripta, 1980, 21, 295-311.	1.2	140
204	Particle-hole formulation of the unitary group approach to the many-electron correlation problem. I. State construction and classification. Physical Review A, 1980, 22, 2299-2315.	1.0	46
205	Stability of Hartree–Fock solutions and symmetry breaking in the independent particle model:Abinitiocase study of the LCAO–MO–SCF solutions for finite chains of hydrogen atoms. Journal of Chemical Physics, 1980, 72, 6546-6559.	1.2	64
206	Particle-hole formulation of the unitary group approach to the many-electron correlation problem. II. Matrix element evaluation. Physical Review A, 1980, 22, 2316-2339.	1.0	44
207	Coupled Cluster Approach. Physica Scripta, 1980, 21, 251-254.	1.2	143
208	Quasi-degeneracy and coupled-pair theories. Chemical Physics Letters, 1979, 67, 144-148.	1.2	39
209	Correlation problems in atomic and molecular systems. VII. Application of the open-shell coupled-cluster approach to simple ?-electron model systems. International Journal of Quantum Chemistry, 1979, 15, 463-479.	1.0	92
210	Configuration interaction matrix elements. I. Algebraic approach to the relationship between unitary group generators and permutations. International Journal of Quantum Chemistry, 1979, 16, 1307-1319.	1.0	44
211	Configuration interaction matrix elements. II. Graphical approach to the relationship between unitary group generators and permutations. International Journal of Quantum Chemistry, 1979, 16, 1321-1335.	1.0	45
212	Orthogonally-spin-adapted coupled-cluster theory for closed-shell systems including triexcited clusters. Physical Review A, 1979, 20, 1-17.	1.0	116
213	The relationship between the unrestricted and projected Hartree-Fock methods in a simple three-electron model system. International Journal of Quantum Chemistry, 1978, 13, 41-65.	1.0	17
214	Doublet stability of ab initio SCF solutions for the allyl radical. Molecular Physics, 1978, 35, 445-459.	0.8	110
215	Calculation of permutation matrices using graphical methods of spin algebras: Explicit expressions for the Serber-coupling case. Physical Review A, 1978, 18, 827-840.	1.0	28
216	Correlation problems in atomic and molecular systems. VI. Coupled-cluster approach to open-shell systems. Physical Review A, 1978, 17, 805-815.	1.0	128

#	Article	IF	CITATIONS
217	Correlation problems in atomic and molecular systems. V. Spinâ€adapted coupled cluster manyâ€electron theory. Journal of Chemical Physics, 1977, 67, 303-318.	1.2	236
218	A remark on doublet stability of allyl radical restricted SCF solutions. Chemical Physics Letters, 1977, 50, 6-8.	1.2	31
219	Application of graphical methods of spin algebras to limitedCI approaches. I. Closed shell case. International Journal of Quantum Chemistry, 1977, 11, 813-848.	1.0	109
220	Application of graphical methods of spin algebras to limitedCI approaches. II. A simple open shell case. International Journal of Quantum Chemistry, 1977, 11, 849-867.	1.0	38
221	An algebraic approach to bound states of simple on <i>e</i> -electron systems. International Journal of Quantum Chemistry, 1977, 12, 875-896.	1.0	99
222	Unitary Group Approach to the Many-Electron Correlation Problem. , 1977, , 411-429.		20
223	Unitary-group approach to the many-electron correlation problem: Relation of Gelfand and Weyl tableau formulations. Physical Review A, 1976, 14, 1620-1625.	1.0	123
224	Many-Electron Correlation Problem. A Group Theoretical Approach. Theoretical Chemistry, 1976, , 131-290.	0.2	15
225	Correlation effects in thePPPmodel of alternant π-electronic systems: two-point Padé approximant approach. International Journal of Quantum Chemistry, 1975, 9, 987-1007.	1.0	16
226	Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems. Advances in Quantum Chemistry, 1975, 9, 105-197.	0.4	467
227	A pattern calculus for the unitary group approach to the electronic correlation problem. International Journal of Quantum Chemistry, 1975, 9, 165-174.	1.0	52
228	Convergence of the Rayleigh‣chrödinger perturbation expansions for the energy levels of the Pariserâ€Parrâ€Pople model of the benzene molecule. Journal of Chemical Physics, 1974, 60, 4825-4829.	1.2	29
229	Green's function approach to the direct perturbation calculation of the excitation energies of closed shell fermion systems. Journal of Chemical Physics, 1974, 60, 149-163.	1.2	96
230	Correlation effects in the low-lying excited states of thePPP models of alternant hydrocarbons. I. Qualitative rules for the effect of limited configuration interaction. International Journal of Quantum Chemistry, 1974, 8, 951-970.	1.0	100
231	Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems. Journal of Chemical Physics, 1974, 61, 5321-5330.	1.2	458
232	Correlation effects in the low-lying excited states of the PPP models of alternant hydrocarbons. II. State correlation diagrams. International Journal of Quantum Chemistry, 1974, 8, 293-303.	1.0	34
233	Study of the correlation effects in a threeâ€electron model system using the projected Hartreeâ€Fock method and the natural spin orbital formalism. Journal of Chemical Physics, 1973, 59, 2560-2571.	1.2	31
234	Stability Conditions for Maximum-Overlap (Brueckner) Independent-Particle Wave Functions. Physical Review A, 1973, 8, 640-649.	1.0	44

#	Article	IF	CITATIONS
235	Diagrammatical Method for Geminals. I. Theory. Journal of Chemical Physics, 1972, 57, 638-651.	1.2	20
236	Diagrammatical Method for Geminals. II. Applications. Journal of Chemical Physics, 1972, 57, 652-666.	1.2	15
237	Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the BH3Molecule. Physical Review A, 1972, 5, 50-67.	1.0	785
238	Geminal Localization in the Separated-Pair Model II. Excited States of the \hat{l}_{i} -Electronic Model of Benzene. International Journal of Quantum Chemistry, 1972, 6, 153-169.	1.0	3
239	A direct calculation of the excitation energies of closed-shell systems using the green function techniqueM. International Journal of Quantum Chemistry, 1972, 6, 435-438.	1.0	8
240	Stability Conditions for the Solutions of the Hartree–Fock Equations for Atomic and Molecular Systems. IV. A Study of Doublet Stability for Odd Linear Polyenic Radicals. Journal of Chemical Physics, 1971, 54, 2293-2303.	1.2	91
241	Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst. International Journal of Quantum Chemistry, 1971, 5, 359-379.	1.0	533
242	Geminal Localization in the Separatedâ€Pair Ï€â€Electronic Model of Benzene. Journal of Chemical Physics, 1971, 55, 2452-2462.	1.2	10
243	Stability Conditions for the Solutions of the Hartree-Fock Equations for Atomic and Molecular Systems. V.The Nonanalytic Behavior of the Broken-Symmetry Solutions at the Branching Point. Physical Review A, 1971, 3, 525-527.	1.0	53
244	Comment on the Paper by Harris and Falicov: "Selfâ€Consistent Theory of Bond Alternation in Polyenes: Normal States, Chargeâ€Density Waves, and Spinâ€Density Waves― Journal of Chemical Physics, 1970, 53, 1619-1620.	1.2	22
245	Stability Conditions for the Solutions of the Hartree–Fock Equations for Atomic and Molecular Systems. II. Simple Openâ€Shell Case. Journal of Chemical Physics, 1970, 52, 2919-2936.	1.2	170
246	Stability Conditions for the Solutions of the Hartree-Fock Equations for Atomic and Molecular Systems. VI. Singlet-Type Instabilities and Charge-Density-Wave Hartree-Fock Solutions for Cyclic Polyenes. Physical Review A, 1970, 2, 2268-2283.	1.0	158
247	Stability Conditions for the Solutions of the Hartree–Fock Equations for Atomic and Molecular Systems. III. Rules for the Singlet Stability of Hartree–Fock Solutions ofÏ€â€Electronic Systems. Journal of Chemical Physics, 1970, 53, 821-829.	1.2	98
248	The instabilities of the hartreeâ€fock solutions for cyclic polyenes with respect to the spin and charge density fluctuations. Journal of Polymer Science Part C Polymer Symposia, 1970, 29, 199-210.	0.1	39
249	A Comment on the Paper by Hideo Fukutome: Spin Density Wave and Charge Transfer Wave in Long Conjugated Molecules. Progress of Theoretical Physics, 1969, 42, 769-774.	2.0	33
250	Cluster expansion analysis for delocalized systems. International Journal of Quantum Chemistry, 1969, 3, 149-167.	1.0	143
251	Stability conditions for the solutions of the Hartree-Fock equations for the simple open-shell case. Chemical Physics Letters, 1969, 3, 1-3.	1.2	73
252	Extended Hückel method: Calculation of the ethylene force field. Theoretica Chimica Acta, 1968, 11, 401-410.	0.9	14

#	Article	IF	CITATIONS
253	Stability Conditions for the Solutions of the Hartree—Fock Equations for Atomic and Molecular Systems. Application to the Piâ€Electron Model of Cyclic Polyenes. Journal of Chemical Physics, 1967, 47, 3976-3985.	1.2	562
254	Calculation of pâ€Band Positions of Aromatic Polycyclic Hydrocarbons by Limited Configuration Interaction Method. Journal of Chemical Physics, 1962, 36, 3129-3134.	1.2	48