
Yibing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2021169/publications.pdf Version: 2024-02-01

VIDING

#	Article	IF	CITATIONS
1	Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform. Renewable Energy, 2016, 93, 591-598.	8.9	125
2	Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 2019, 136, 393-402.	8.9	83
3	DNNâ€based approach for fault detection in a direct drive wind turbine. IET Renewable Power Generation, 2018, 12, 1164-1171.	3.1	49
4	Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox. Energies, 2017, 10, 32.	3.1	46
5	Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration. Mechanical Systems and Signal Processing, 2017, 87, 279-293.	8.0	40
6	Vibration Analysis for Fault Detection of Wind Turbine Drivetrains—A Comprehensive Investigation. Sensors, 2021, 21, 1686.	3.8	39
7	Nonlinear dynamic response of a rub-impact rod fastening rotor considering nonlinear contact characteristic. Archive of Applied Mechanics, 2016, 86, 1869-1886.	2.2	34
8	Optimal Sensor Placement and Minimum Number Selection of Sensors for Health Monitoring of Transmission Towers. Shock and Vibration, 2020, 2020, 1-12.	0.6	33
9	Pitting Fault Detection of a Wind Turbine Gearbox Using Empirical Mode Decomposition. Strojniski Vestnik/Journal of Mechanical Engineering, 2014, 60, 12-20.	1.1	32
10	Nonlinear dynamic behaviors of circumferential rod fastening rotor under unbalanced pre-tightening force. Archive of Applied Mechanics, 2016, 86, 1621-1631.	2.2	31
11	Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection. Energies, 2016, 9, 883.	3.1	30
12	Fault detection of planetary subassemblies in a wind turbine gearbox using TQWT based sparse representation. Journal of Sound and Vibration, 2021, 490, 115707.	3.9	28
13	Mechanism and characteristic of rain-induced vibration on high-voltage transmission line. Journal of Mechanical Science and Technology, 2012, 26, 2505-2510.	1.5	27
14	Sparse dictionary learning based adversarial variational auto-encoders for fault identification of wind turbines. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109810.	5.0	24
15	A Robust Model-Based Approach for Bearing Remaining Useful Life Prognosis in Wind Turbines. IEEE Access, 2020, 8, 47133-47143.	4.2	23
16	Wind speed prediction based on genetic neural network. , 2009, , .		16
17	Application of the multiâ€scale enveloping spectrogram to detect weak faults in a wind turbine gearbox. IET Renewable Power Generation, 2017, 11, 578-584.	3.1	13
18	Surge detection methods using empirical mode decomposition and continuous wavelet transform for a centrifugal compressor. Journal of Mechanical Science and Technology, 2016, 30, 1533-1536.	1.5	12

Yibing Liu

#	Article	IF	CITATIONS
19	Adaptive fault detection of the bearing in wind turbine generators using parameterless empirical wavelet transform and margin factor. JVC/Journal of Vibration and Control, 2019, 25, 1263-1278.	2.6	12
20	Investigation on aerodynamic instability of high-voltage transmission lines under rain-wind condition. Journal of Mechanical Science and Technology, 2015, 29, 131-139.	1.5	10
21	Large Swing Behavior of Overhead Transmission Lines under Rain-Load Conditions. Energies, 2018, 11, 1092.	3.1	10
22	A Model-Agnostic Meta-Baseline Method for Few-Shot Fault Diagnosis of Wind Turbines. Sensors, 2022, 22, 3288.	3.8	9
23	Bispectrum analysis for feature extraction of pitting fault in wind turbine gearbox. , 2010, , .		8
24	An Intermolecular Hydroarylation of Highly Deactivated Styrenes Catalyzed by Re ₂ O ₇ /HReO ₄ in Hexafluoroisopropanol. ACS Catalysis, 2022, 12, 5857-5863.	11.2	8
25	Leakage detection for hydraulic IGV system in gas turbine compressor with recursive ridge regression estimation. Journal of Mechanical Science and Technology, 2017, 31, 4551-4556.	1.5	7
26	A Novel Transfer Learning Method Based on Conditional Variational Generative Adversarial Networks for Fault Diagnosis of Wind Turbine Gearboxes under Variable Working Conditions. Sustainability, 2022, 14, 5441.	3.2	7
27	An improved opportunistic group replacement maintenance strategy for wind turbines. Energy Science and Engineering, 2020, 8, 3627-3637.	4.0	6
28	One-Shot Fault Diagnosis of Wind Turbines Based on Meta-Analogical Momentum Contrast Learning. Energies, 2022, 15, 3133.	3.1	6
29	A theoretical model of rain–wind–induced in-plane galloping on overhead transmission tower-lines system. Advances in Mechanical Engineering, 2015, 7, 168781401560459.	1.6	5
30	Cyclostationary Analysis of a Faulty Bearing in the Wind Turbine. Journal of Solar Energy Engineering, Transactions of the ASME, 2017, 139, .	1.8	5
31	An opportunistic maintenance strategy for wind turbines. IET Renewable Power Generation, 2021, 15, 3793-3805.	3.1	4
32	Amplitude envelope analysis for feature extraction of direct-driven wind turbine bearing failure. , 2012, , .		3
33	Nonlinear Dynamic Characteristics of Rod Fastening Rotor with Preload Relaxation. Energies, 2022, 15, 1052.	3.1	3
34	Turbine vibration source separation based on Independent Component Analysis. , 2010, , .		2
35	Modeling and Mechanism of Rain-Wind Induced Vibration of Bundled Conductors. Shock and Vibration, 2016, 2016, 1-7.	0.6	2
36	Improved criticality analysis method of equipment failures in wind turbines. IET Renewable Power Generation, 2019, 13, 1205-1213.	3.1	2

YIBING LIU

#	Article	IF	CITATIONS
37	Dynamic Modeling and Stability Analysis of a Heavy-Duty Flywheel Rotor-Bearing System with Two Cracks. International Journal of Structural Stability and Dynamics, 2022, 22, .	2.4	2
38	Nonlinear Dynamic Characteristics of Multidisk Rod Fastening Rotor with Axial Unbalance Mass Distribution. Shock and Vibration, 2022, 2022, 1-14.	0.6	2
39	Extraction of fault feature values for piston compressor based on bispectrum analysis. , 2009, , .		1
40	Defect detection of wind turbine gearbox using demodulation analysis. , 2011, , .		1
41	Analysis of lower frequent vibration of large wind turbine tower. , 2011, , .		1
42	Modeling and numerical analysis of corona-induced vibration on high-voltage transmission line with raindrops. Journal of Mechanical Science and Technology, 2015, 29, 4575-4581.	1.5	1
43	Enhanced POM strategy and its application to wind turbines. IET Renewable Power Generation, 2019, 13, 2913-2921.	3.1	1
44	Feature extraction of turbine abnormal vibration condition based on ICA. , 2011, , .		0
45	Application of over-complete ICA in separating turbine vibration sources. , 2012, , .		0
46	Optimal Placement of Health Monitoring Sensor for Bridge Structure of Air-Cooled Island. , 2019, , .		0
47	A research on the Monte Carlo simulation based on-condition maintenance strategy for wind turbines. , 2020, , .		0
48	A modeling method of flywheel rotor based on finite element and model simplification. Archive of Applied Mechanics, 0, , 1.	2.2	0