Russell Ouellette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2020368/publications.pdf Version: 2024-02-01

RUSSELL OHELLETTE

#	Article	IF	CITATIONS
1	Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage, 2019, 184, 901-915.	2.1	163
2	In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain, 2017, 140, 2912-2926.	3.7	159
3	Neuroinflammatory component of gray matter pathology in multiple sclerosis. Annals of Neurology, 2016, 80, 776-790.	2.8	150
4	Nervous System Involvement in Coronavirus Disease 2019: Results from a Retrospective Consecutive Neuroimaging Cohort. Radiology, 2020, 297, E324-E334.	3.6	94
5	Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain, 2019, 142, 633-646.	3.7	75
6	COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin-aldosterone system. Nature Communications, 2021, 12, 2417.	5.8	75
7	Neurological manifestations of coronavirus infections – a systematic review. Annals of Clinical and Translational Neurology, 2020, 7, 2057-2071.	1.7	59
8	Longitudinal Characterization of Cortical Lesion Development and Evolution in Multiple Sclerosis with 7.0-T MRI. Radiology, 2019, 291, 740-749.	3.6	56
9	Validation of Rapid Magnetic Resonance Myelin Imaging in Multiple Sclerosis. Annals of Neurology, 2020, 87, 710-724.	2.8	42
10	Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability. Brain, 2020, 143, 2089-2105.	3.7	34
11	Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI. NeuroImage: Clinical, 2019, 22, 101699.	1.4	27
12	Profiles of cortical inflammation in multiple sclerosis by 11C-PBR28 MR-PET and 7 Tesla imaging. Multiple Sclerosis Journal, 2020, 26, 1497-1509.	1.4	22
13	7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis. Brain, 2020, 143, 2973-2987.	3.7	22
14	Lesion accumulation is predictive of long-term cognitive decline in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 21, 110-116.	0.9	20
15	Changes in structural network are associated with cortical demyelination in early multiple sclerosis. Human Brain Mapping, 2018, 39, 2133-2146.	1.9	16
16	Evidence of diffuse cerebellar neuroinflammation in multiple sclerosis by ¹¹ C-PBR28 MR-PET. Multiple Sclerosis Journal, 2020, 26, 668-678.	1.4	16
17	Characterization of thalamic lesions and their correlates in multiple sclerosis by ultra-high-field MRI. Multiple Sclerosis Journal, 2021, 27, 674-683.	1.4	15
18	Deep Learning Corpus Callosum Segmentation as a Neurodegenerative Marker in Multiple Sclerosis. Journal of Neuroimaging, 2021, 31, 493-500.	1.0	13

RUSSELL OUELLETTE

#	Article	IF	CITATIONS
19	Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis. Journal of Neuroimaging, 2020, 30, 674-682.	1.0	12
20	The relevance of multiple sclerosis cortical lesions on cortical thinning and their clinical impact as assessed by 7.0-T MRI. Journal of Neurology, 2021, 268, 2473-2481.	1.8	11
21	Evidence for Progressive Microstructural Damage in Early Multiple Sclerosis by Multi-Shell Diffusion Magnetic Resonance Imaging. Neuroscience, 2019, 403, 27-34.	1.1	10
22	MRIâ€Based Manual versus Automated Corpus Callosum Volumetric Measurements in Multiple Sclerosis. Journal of Neuroimaging, 2020, 30, 198-204.	1.0	6
23	Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis. Journal of Neuroimaging, 2022, 32, 459-470.	1.0	5
24	Quantitative 7-Tesla Imaging of Cortical Myelin Changes in Early Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 714820.	1.1	4
25	Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis. Journal of Neuroimaging, 2022, 32, 471-479.	1.0	3
26	Advanced <scp>MRI</scp> quantification of neuroinflammatory disorders. Journal of Neuroscience Research, 2022, 100, 1389-1394.	1.3	1