Annapaola Migani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/202024/publications.pdf

Version: 2024-02-01

49 papers 3,186 citations

168829 31 h-index 50 g-index

51 all docs 51 docs citations

51 times ranked

4683 citing authors

#	Article	IF	CITATIONS
1	Phosphorus-Doped Graphene as a Metal-Free Material for Thermochemical Water Reforming at Unusually Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 838-846.	3.2	28
2	Theoretical study of non-Hammett <i>vs.</i> Hammett behaviour in the thermolysis and photolysis of arylchlorodiazirines. Physical Chemistry Chemical Physics, 2018, 20, 1181-1188.	1.3	15
3	What Controls Photocatalytic Water Oxidation on Rutile TiO ₂ (110) under Ultra-High-Vacuum Conditions?. Journal of the American Chemical Society, 2017, 139, 11845-11856.	6.6	48
4	Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO ₂ (110). Journal of Chemical Theory and Computation, 2016, 12, 2843-2852.	2.3	31
5	Excitonic Interfacial Proton-Coupled Electron Transfer Mechanism in the Photocatalytic Oxidation of Methanol to Formaldehyde on TiO ₂ (110). Journal of the American Chemical Society, 2016, 138, 16165-16173.	6.6	64
6	Early events in the photochemistry of 5-diazo Meldrum's acid: formation of a product manifold in C–N bound and pre-dissociated intersection seam regions. Physical Chemistry Chemical Physics, 2016, 18, 30785-30793.	1.3	11
7	Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H ₂ O on TiO ₂ (110). Journal of Chemical Theory and Computation, 2015, 11, 239-251.	2.3	28
8	Using <i>G</i> ₀ <i>W</i> ₀ Level Alignment to Identify Catechol's Structure on TiO ₂ (110). Journal of Physical Chemistry C, 2015, 119, 19634-19641.	1.5	13
9	Comparing Quasiparticle H ₂ O Level Alignment on Anatase and Rutile TiO ₂ . ACS Catalysis, 2015, 5, 4242-4254.	5.5	50
10	Coverage dependence of the level alignment for methanol on TiO2(110). Computational and Theoretical Chemistry, 2014, 1040-1041, 259-265.	1.1	13
11	Oxygen vacancies in self-assemblies of ceria nanoparticles. Journal of Materials Chemistry A, 2014, 2, 18329-18338.	5.2	33
12	Quasiparticle Level Alignment for Photocatalytic Interfaces. Journal of Chemical Theory and Computation, 2014, 10, 2103-2113.	2.3	60
13	Level Alignment of a Prototypical Photocatalytic System: Methanol on TiO ₂ (110). Journal of the American Chemical Society, 2013, 135, 11429-11432.	6.6	68
14	Gold and Methane: A Noble Combination for Delicate Oxidation. Journal of Physical Chemistry Letters, 2013, 4, 3006-3012.	2.1	28
15	Irreversible phototautomerization of o-phthalaldehyde through electronic relocation. Physical Chemistry Chemical Physics, 2012, 14, 6561.	1.3	19
16	Octahedrality versus tetrahedrality in stoichiometric ceria nanoparticles. Chemical Communications, 2012, 48, 4199.	2.2	25
17	Wave Packet Dynamics at an Extended Seam of Conical Intersection: Mechanism of the Light-Induced Wolff Rearrangement. Journal of Physical Chemistry Letters, 2012, 3, 1056-1061.	2.1	32
18	Effects of deposited Pt particles on the reducibility of CeO2(111). Physical Chemistry Chemical Physics, 2011, 13, 11384.	1.3	89

#	Article	IF	CITATIONS
19	Ultrafast irreversible phototautomerization of o-nitrobenzaldehyde. Chemical Communications, 2011, 47, 6383.	2.2	33
20	A non-adiabatic quantum-classical dynamics study of the intramolecular excited state hydrogen transfer in ortho-nitrobenzaldehyde. Physical Chemistry Chemical Physics, 2011, 13, 14685.	1.3	17
21	Formation of Superoxide Anions on Ceria Nanoparticles by Interaction of Molecular Oxygen with Ce ³⁺ Sites. Journal of Physical Chemistry C, 2011, 115, 5817-5822.	1.5	107
22	Density Functional Modeling of the Interactions of Platinum Clusters with CeO ₂ Nanoparticles of Different Size. Journal of Physical Chemistry C, 2011, 115, 16081-16086.	1.5	40
23	Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nature Materials, 2011, 10, 310-315.	13.3	748
24	Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chemical Communications, 2010, 46, 5936.	2.2	160
25	A global picture of the S1/S0 conical intersection seam of benzene. Chemical Physics, 2010, 377, 60-65.	0.9	61
26	Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. Journal of Materials Chemistry, 2010, 20, 10535.	6.7	192
27	Exploring Ce3+/Ce4+ cation ordering in reduced ceria nanoparticles using interionic-potential and density-functional calculations. Journal of Chemical Physics, 2009, 131, 064701.	1.2	50
28	MS-CASPT2 Assignment of the UV/Vis Absorption Spectrum of Diazoquinones Undergoing the Photoinduced Wolff Rearrangement. Journal of Physical Chemistry A, 2009, 113, 9413-9417.	1.1	13
29	Benign Decay vs. Photolysis in the Photophysics and Photochemistry of 5-Bromouracil. A Computational Study. Journal of Physical Chemistry A, 2009, 113, 5489-5495.	1.1	19
30	Towards size-converged properties of model ceria nanoparticles: Monitoring by adsorbed CO using DFT +U approach. Chemical Physics Letters, 2008, 465, 106-109.	1.2	31
31	Density functional studies of model cerium oxide nanoparticles. Physical Chemistry Chemical Physics, 2008, 10, 5730.	1.3	125
32	Electronic States of $\langle i \rangle o \langle i \rangle$ -Nitrobenzaldehyde: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2008, 112, 5046-5053.	1.1	30
33	An Extended Conical Intersection Seam Associated with a Manifold of Decay Paths: Excited-State Intramolecular Proton Transfer in O-Hydroxybenzaldehyde. Journal of the American Chemical Society, 2008, 130, 6932-6933.	6.6	64
34	Modeling Thymine Photodimerizations in DNA:  Mechanism and Correlation Diagrams. Journal of the American Chemical Society, 2007, 129, 14540-14541.	6.6	88
35	Photostability versus Photodegradation in the Excited-State Intramolecular Proton Transfer of Nitro Enamines:Â Competing Reaction Paths and Conical Intersections. Journal of the American Chemical Society, 2007, 129, 3703-3713.	6.6	32
36	Benign and Degrading Excited-State Processes of DNA Nucleobases and their Derivatives. AIP Conference Proceedings, 2007, , .	0.3	0

#	Article	IF	CITATIONS
37	Water effect on the excited-state decay paths of singlet excited cytosine. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 283-289.	2.0	43
38	Requirements for the generalization of the ab initio two-state model for external electric field induced electron transfer at electrodes. Journal of Electroanalytical Chemistry, 2007, 607, 25-36.	1.9	1
39	A Systematic Study of the Structure and Bonding of Halogens on Low-Index Transition Metal Surfaces. Journal of Physical Chemistry B, 2006, 110, 11894-11906.	1.2	93
40	Chemisorption of atomic chlorine on metal surfaces and the interpretation of the induced work function changes. Surface Science, 2005, 574, 297-305.	0.8	66
41	Electric field induced electron transfer at the adsorbate–surface interface. Effect of the type of metal surface. Physical Chemistry Chemical Physics, 2005, 7, 3353.	1.3	6
42	The Ring-Opening Reaction of Chromenes:Â A Photochemical Mode-Dependent Transformation. Journal of Physical Chemistry A, 2005, 109, 8684-8692.	1.1	41
43	CONICAL INTERSECTIONS AND ORGANIC REACTION MECHANISMS. Advanced Series in Physical Chemistry, 2004, , 271-320.	1.5	50
44	Structure of the intersection space associated with Z/E photoisomerization of retinal in rhodopsin proteins. Faraday Discussions, 2004, 127, 179-191.	1.6	60
45	Probing the Photochemical Funnel of a Retinal Chromophore Model via Zero-Point Energy Sampling Semiclassical Dynamics. Journal of Physical Chemistry A, 2004, 108, 4685-4693.	1.1	81
46	CASPT2//CASSCF and TDDFT//CASSCF Mapping of the Excited State Isomerization Path of a Minimal Model of the Retinal Chromophore. Journal of Physical Chemistry A, 2004, 108, 1208-1213.	1.1	82
47	Design and Photochemical Characterization of a Biomimetic Light-Driven Z/E Switcher. Journal of the American Chemical Society, 2004, 126, 9349-9359.	6.6	58
48	Relationship between Photoisomerization Path and Intersection Space in a Retinal Chromophore Model. Journal of the American Chemical Society, 2003, 125, 2804-2808.	6.6	110
49	Photoisomerization acceleration in retinal protonated Schiff-base models. Photochemical and Photobiological Sciences, 2003, 2, 1250.	1.6	25