
In Hye Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2020141/publications.pdf Version: 2024-02-01

IN HVE KIM

#	Article	IF	CITATIONS
1	Vanillin improves scopolamineâ€ʻinduced memory impairment through restoration of ID1 expression in the mouse hippocampus. Molecular Medicine Reports, 2018, 17, 4399-4405.	2.4	7
2	Long-term treadmill exercise improves memory impairment through restoration of decreased synaptic adhesion molecule 1/2/3 induced by transient cerebral ischemia in the aged gerbil hippocampus. Experimental Gerontology, 2018, 103, 124-131.	2.8	10
3	Melatonin Improves Cognitive Deficits via Restoration of Cholinergic Dysfunction in a Mouse Model of Scopolamine-Induced Amnesia. ACS Chemical Neuroscience, 2018, 9, 2016-2024.	3.5	22
4	Neuroprotection of ischemic preconditioning is mediated by thioredoxin 2 in the hippocampal CA1 region following a subsequent transient cerebral ischemia. Brain Pathology, 2017, 27, 276-291.	4.1	47
5	Neuroprotection and reduced gliosis by pre- and post-treatments of hydroquinone in a gerbil model of transient cerebral ischemia. Chemico-Biological Interactions, 2017, 278, 230-238.	4.0	19
6	Transient Cerebral Ischemia Alters GSK-3β and p-GSK-3β Immunoreactivity in Pyramidal Neurons and Induces p-GSK-3β Expression in Astrocytes in the Gerbil Hippocampal CA1 Area. Neurochemical Research, 2017, 42, 2305-2313.	3.3	14
7	Effects of long-term post-ischemic treadmill exercise on gliosis in the aged gerbil hippocampus induced by transient cerebral ischemia. Molecular Medicine Reports, 2017, 15, 3623-3630.	2.4	8
8	G protein, phosphorylated-GATA4 and VEGF expression in the hearts of transgenic mice overexpressing β1- and β2-adrenergic receptors. Molecular Medicine Reports, 2017, 15, 4049-4054.	2.4	0
9	Pre-treatment with Chrysanthemum indicum Linné extract protects pyramidal neurons from transient cerebral ischemia via increasing antioxidants in the gerbil hippocampal CA1 region. Molecular Medicine Reports, 2017, 16, 133-142.	2.4	11
10	Immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the somatosensory cortex of rodents during normal aging. Molecular Medicine Reports, 2017, 16, 7191-7198.	2.4	18
11	Effects of ischemic preconditioning on PDGF-BB expression in the gerbil hippocampal CA1 region following transient cerebral ischemia. Molecular Medicine Reports, 2017, 16, 1627-1634.	2.4	5
12	Rufinamide pretreatment attenuates ischemia-reperfusion injury in the gerbil hippocampus. Neurological Research, 2017, 39, 941-952.	1.3	16
13	Effects of chronic scopolamine treatment on cognitive impairment and neurofilament expression in the mouse hippocampus. Molecular Medicine Reports, 2017, 17, 1625-1632.	2.4	18
14	Sac-1004, a vascular leakage blocker, reduces cerebral ischemia—reperfusion injury by suppressing blood–brain barrier disruption and inflammation. Journal of Neuroinflammation, 2017, 14, 122.	7.2	72
15	Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia. Molecular Neurobiology, 2017, 54, 6984-6998.	4.0	32
16	Pretreated Glehnia littoralis Extract Prevents Neuronal Death Following Transient Global Cerebral Ischemia through Increases of Superoxide Dismutase 1 and Brain-derived Neurotrophic Factor Expressions in the Gerbil Hippocampal Cornu Ammonis 1 Area. Chinese Medical Journal, 2017, 130, 1796-1803.	2.3	18
17	Age-dependent differences in myelin basic protein expression in the hippocampus of young, adult and aged gerbils. Laboratory Animal Research, 2017, 33, 237.	2.5	12
18	Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes. Neural Regeneration Research, 2017, 12, 220.	3.0	39

Ιν Ηγε Κιμ

#	Article	IF	CITATIONS
19	Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia. Neural Regeneration Research, 2017, 12, 918.	3.0	2
20	Effect of hyperthermia on calbindin-D 28k immunoreactivity in the hippocampal formation following transient global cerebral ischemia in gerbils. Neural Regeneration Research, 2017, 12, 1458.	3.0	6
21	New GABAergic Neurogenesis in the Hippocampal CA1 Region of a Gerbil Model of Longâ€Term Survival after Transient Cerebral Ischemic Injury. Brain Pathology, 2016, 26, 581-592.	4.1	40
22	Differential activation of c-Fos in the paraventricular nuclei of the hypothalamus and thalamus following myocardial infarction in rats. Molecular Medicine Reports, 2016, 14, 3503-3508.	2.4	5
23	Tanshinone I Enhances Neurogenesis in the Mouse Hippocampal Dentate Gyrus via Increasing Wnt-3, Phosphorylated Glycogen Synthase Kinase-3β and β-Catenin Immunoreactivities. Neurochemical Research, 2016, 41, 1958-1968.	3.3	17
24	Hydroquinone Strongly Alleviates Focal Ischemic Brain Injury via Blockage of Blood–Brain Barrier Disruption in Rats. Toxicological Sciences, 2016, 154, 430-441.	3.1	15
25	Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia. Neurochemical Research, 2016, 41, 2380-2390.	3.3	16
26	Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats. Molecular Medicine Reports, 2016, 14, 851-856.	2.4	10
27	Effects of Chronic Scopolamine Treatment on Cognitive Impairments and Myelin Basic Protein Expression in the Mouse Hippocampus. Journal of Molecular Neuroscience, 2016, 59, 579-589.	2.3	16
28	Ischemia-Induced Changes of PRAS40 and p-PRAS40 Immunoreactivities in the Gerbil Hippocampal CA1 Region After Transient Cerebral Ischemia. Cellular and Molecular Neurobiology, 2016, 36, 821-828.	3.3	12
29	Long-term observation of neuronal degeneration and microgliosis in the gerbil dentate gyrus after transient cerebral ischemia. Journal of the Neurological Sciences, 2016, 363, 21-26.	0.6	23
30	Time interval after ischaemic preconditioning affects neuroprotection and gliosis in the gerbil hippocampal CA1 region induced by transient cerebral ischaemia. Neurological Research, 2016, 38, 210-219.	1.3	6
31	Neuroprotection of Chrysanthemum indicum Linne against cerebral ischemia/reperfusion injury by anti-inflammatory effect in gerbils. Neural Regeneration Research, 2016, 11, 270.	3.0	17
32	Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia. Neural Regeneration Research, 2016, 11, 1081.	3.0	9
33	Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils. Iranian Journal of Basic Medical Sciences, 2016, 19, 521-8.	1.0	1
34	Effect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury. Iranian Journal of Basic Medical Sciences, 2016, 19, 624-31.	1.0	0
35	Increased cyclooxygenase-2 and nuclear factor-κB/p65 expression in mouse hippocampi after systemic administration of tetanus toxin. Molecular Medicine Reports, 2015, 12, 7837-7844.	2.4	4
36	Changes in the expression of DNA-binding/differentiation protein inhibitors in neurons and glial cells of the gerbil hippocampus following transient global cerebral ischemia. Molecular Medicine Reports, 2015, 11, 2477-2485.	2.4	11

Ιν Ηγε Κιμ

#	Article	IF	CITATIONS
37	Increased immunoreactivity of c-Fos in the spinal cord of the aged mouse and dog. Molecular Medicine Reports, 2015, 11, 1043-1048.	2.4	2
38	lschemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia. Molecular Medicine Reports, 2015, 12, 4939-4946.	2.4	2
39	lschemic preconditioning protects neurons from damage and maintains the immunoreactivity of kynurenic acid in the gerbil hippocampal CA1 region following transient cerebral ischemia. International Journal of Molecular Medicine, 2015, 35, 1537-1544.	4.0	13
40	Hyperthermic preconditioning severely accelerates neuronal damage in the gerbil ischemic hippocampal dentate gyrus via decreasing SODs expressions. Journal of the Neurological Sciences, 2015, 358, 266-275.	0.6	8
41	Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke. Experimental and Therapeutic Medicine, 2015, 10, 2007-2014.	1.8	22
42	lschemic preconditioning protects hippocampal pyramidal neurons from transient ischemic injury via the attenuation of oxidative damage through upregulating heme oxygenase-1. Free Radical Biology and Medicine, 2015, 79, 78-90.	2.9	39
43	lschemic preconditioning inhibits expression of Na+/H+ exchanger 1 (NHE1) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Journal of the Neurological Sciences, 2015, 351, 146-153.	0.6	11
44	Failure in neuroprotection of remote limb ischemic postconditioning in the hippocampus of a gerbil model of transient cerebral ischemia. Journal of the Neurological Sciences, 2015, 358, 377-384.	0.6	3
45	Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia. Neurochemical Research, 2015, 40, 1984-1995.	3.3	17
46	Neuroprotection and reduced gliosis by atomoxetine pretreatment in a gerbil model of transient cerebral ischemia. Journal of the Neurological Sciences, 2015, 359, 373-380.	0.6	25
47	Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus. Neural Regeneration Research, 2015, 10, 271.	3.0	9
48	Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus. Neural Regeneration Research, 2015, 10, 944.	3.0	12
49	Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction. Neural Regeneration Research, 2015, 10, 1251.	3.0	7
50	Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia. Neural Regeneration Research, 2015, 10, 1604.	3.0	10
51	Comparison of neuroprotective effects of extract and fractions fromAgarum clathratumagainst experimentally induced transient cerebral ischemic damage. Pharmaceutical Biology, 2014, 52, 335-343.	2.9	14
52	Effects of ischemic preconditioning on VEGF and pFlk-1 immunoreactivities in the gerbil ischemic hippocampus after transient cerebral ischemia. Journal of the Neurological Sciences, 2014, 347, 179-187.	0.6	10
53	lschemic preconditioning-induced neuroprotection against transient cerebral ischemic damage via attenuating ubiquitin aggregation. Journal of the Neurological Sciences, 2014, 336, 74-82.	0.6	26
54	Transient ischemia-induced change of CCR7 immunoreactivity in neurons and its new expression in astrocytes in the gerbil hippocampus. Journal of the Neurological Sciences, 2014, 336, 203-210.	0.6	10

Ιν Ηγε Κιμ

#	Article	IF	CITATIONS
55	Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death. Neural Regeneration Research, 2014, 9, 1731.	3.0	17
56	Neuroprotection via maintenance or increase of antioxidants and neurotrophic factors in ischemic gerbil hippocampus treated with tanshinone I. Chinese Medical Journal, 2014, 127, 3396-405.	2.3	13
57	Oenanthe javanica extract increases immunoreactivities of antioxidant enzymes in the rat kidney. Chinese Medical Journal, 2014, 127, 3758-63.	2.3	7
58	Hippophae rhamnoides L. leaves extract enhances cell proliferation and neuroblast differentiation through upregulation of intrinsic factors in the dentate gyrus of the aged gerbil. Chinese Medical Journal, 2014, 127, 4006-11.	2.3	1
59	Neuroprotection of a Novel Synthetic Caffeic Acid-Syringic Acid Hybrid Compound against Experimentally Induced Transient Cerebral Ischemic Damage. Planta Medica, 2013, 79, 313-321.	1.3	23