List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2020067/publications.pdf Version: 2024-02-01

ADAM E SNOOK

#	Article	IF	CITATIONS
1	Functional Assessment of Missense Variants in the ABCC6 Gene Implicated in Pseudoxanthoma Elasticum, a Heritable Ectopic Mineralization Disorder. Journal of Investigative Dermatology, 2022, 142, 1085-1093.	0.7	2
2	Genetic heterogeneity of heritable ectopic mineralization disorders in a large international cohort. Genetics in Medicine, 2022, 24, 75-86.	2.4	5
3	Evaluation of CAR-T cell cytotoxicity: Real-time impedance-based analysis. Methods in Cell Biology, 2022, 167, 81-98.	1.1	5
4	Emerging drug targets for colon cancer: A preclinical assessment. Expert Opinion on Therapeutic Targets, 2022, 26, 207-216.	3.4	4
5	Targeting gastrointestinal cancers with chimeric antigen receptor (CAR)-T cell therapy. Cancer Biology and Therapy, 2022, 23, 127-133.	3.4	10
6	A β-Catenin-TCF-Sensitive Locus Control Region Mediates GUCY2C Ligand Loss in Colorectal Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1276-1296.	4.5	6
7	Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nature Communications, 2022, 13, 1381.	12.8	31
8	T-Cell Responses to Immunodominant Listeria Epitopes Limit Vaccine-Directed Responses to the Colorectal Cancer Antigen, Guanylyl Cyclase C. Frontiers in Immunology, 2022, 13, 855759.	4.8	12
9	A βâ€cateninâ€TCFâ€sensitive Locus Control Region Mediates GUCY2C Ligand Loss in Colorectal Cancer. FASEB Journal, 2022, 36, .	0.5	0
10	Chimeric adenoviral (Ad5.F35) and listeria vector prime-boost immunization is safe and effective for cancer immunotherapy. Npj Vaccines, 2022, 7, .	6.0	5
11	From leptin to lasers: the past and present of mouse models of obesity. Expert Opinion on Drug Discovery, 2021, 16, 777-790.	5.0	0
12	Guanylyl cyclase C as a biomarker for immunotherapies for the treatment of gastrointestinal malignancies. Biomarkers in Medicine, 2021, 15, 201-217.	1.4	1
13	Stem cells as therapeutic targets in colorectal cancer. Personalized Medicine, 2021, 18, 171-183.	1.5	6
14	Guanylyl cyclase 2C (GUCY2C) in gastrointestinal cancers: recent innovations and therapeutic potential. Expert Opinion on Therapeutic Targets, 2021, 25, 335-346.	3.4	7
15	The shifting paradigm of colorectal cancer treatment: a look into emerging cancer stem cell-directed therapeutics to lead the charge toward complete remission. Expert Opinion on Biological Therapy, 2021, 21, 1335-1345.	3.1	5
16	Vaccines and immune checkpoint inhibitors: a promising combination strategy in gastrointestinal cancers. Immunotherapy, 2021, 13, 561-564.	2.0	4
17	Emerging targets for the diagnosis of Parkinson's disease: examination of systemic biomarkers. Biomarkers in Medicine, 2021, 15, 597-608.	1.4	0
18	Abstract 40: Targeting SOX10-deficient cells to reduce resistance to targeted therapy in melanoma. , 2021, , .		0

#	Article	IF	CITATIONS
19	GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. Expert Review of Precision Medicine and Drug Development, 2021, 6, 117-129.	0.7	6
20	Cancer Vaccines and Immunotherapy for Tumor Prevention and Treatment. Vaccines, 2021, 9, 1298.	4.4	5
21	Mobilizing Toxins for Cancer Treatment: Historical Perspectives and Current Strategies. Toxins, 2020, 12, 416.	3.4	1
22	Chimeric Ad5.F35 vector evades anti-adenovirus serotype 5 neutralization opposing GUCY2C-targeted antitumor immunity. , 2020, 8, e001046.		16
23	pH-Dependent Grafting of Cancer Cells with Antigenic Epitopes Promotes Selective Antibody-Mediated Cytotoxicity. Journal of Medicinal Chemistry, 2020, 63, 3713-3722.	6.4	11
24	Silencing the intestinal GUCY2C tumor suppressor axis requires <i>APC</i> loss of heterozygosity. Cancer Biology and Therapy, 2020, 21, 799-805.	3.4	13
25	Companion vaccines for CARÂT-cell therapy: applying basic immunology to enhance therapeutic efficacy. Future Medicinal Chemistry, 2020, 12, 1359-1362.	2.3	3
26	APC-β-catenin-TCF signaling silences the intestinal guanylin-GUCY2C tumor suppressor axis. Cancer Biology and Therapy, 2020, 21, 441-451.	3.4	10
27	Talkin' Toxins: From Coley's to Modern Cancer Immunotherapy. Toxins, 2020, 12, 241.	3.4	47
28	Biomarker targeting of colorectal cancer stem cells. Biomarkers in Medicine, 2019, 13, 891-894.	1.4	3
29	NHERF3 is necessary for <i>Escherichia coli</i> heat-stable enterotoxin-induced inhibition of NHE3: differences in signaling in mouse small intestine and Caco-2 cells. American Journal of Physiology - Cell Physiology, 2019, 317, C737-C748.	4.6	8
30	Non-thermal plasma-induced immunogenic cell death in cancer. Journal Physics D: Applied Physics, 2019, 52, 423001.	2.8	63
31	Two distinct GUCY2C circuits with PMV (hypothalamic) and SN/VTA (midbrain) origin. Brain Structure and Function, 2019, 224, 2983-2999.	2.3	19
32	Silencing the GUCA2A-GUCY2C tumor suppressor axis in CIN, serrated, and MSI colorectal neoplasia. Human Pathology, 2019, 87, 103-114.	2.0	18
33	Therapeutic targeting of gastrointestinal cancer stem cells. Regenerative Medicine, 2019, 14, 331-343.	1.7	9
34	Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. , 2019, 7, 104.		43
35	Adenovirus-Mediated ABCC6 Gene Therapy for Heritable Ectopic Mineralization Disorders. Journal of Investigative Dermatology, 2019, 139, 1254-1263.	0.7	19
36	Advances in Chimeric Antigen Receptor Tâ€Cell Therapies for Solid Tumors. Clinical Pharmacology and Therapeutics, 2019, 105, 71-78.	4.7	22

#	Article	IF	CITATIONS
37	TCR Retrogenic Mice as a Model To Map Self-Tolerance Mechanisms to the Cancer Mucosa Antigen GUCY2C. Journal of Immunology, 2019, 202, 1301-1310.	0.8	6
38	Human GUCY2C-Targeted Chimeric Antigen Receptor (CAR)-Expressing T Cells Eliminate Colorectal Cancer Metastases. Cancer Immunology Research, 2018, 6, 509-516.	3.4	100
39	Immunotherapy regimens for metastatic colorectal carcinomas. Human Vaccines and Immunotherapeutics, 2018, 14, 250-254.	3.3	14
40	Non-Thermal Plasma Induced Immunogenic Cell Death in a Colorectal and Pancreatic Cancer Murine Model. Journal of the American College of Surgeons, 2018, 227, e217.	0.5	0
41	Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines, 2018, 6, 48.	4.4	81
42	Non-thermal plasma induces immunogenic cell death <i>in vivo</i> in murine CT26 colorectal tumors. Oncolmmunology, 2018, 7, e1484978.	4.6	111
43	Abstract B15: Combination immunotherapy of murine prostate cancer using a Listeria-based PSA vaccine: Immune correlates of efficacy and resistance development. , 2018, , .		1
44	siRNA-Encapsulated Hybrid Nanoparticles Target Mutant K-ras and Inhibit Metastatic Tumor Burden in a Mouse Model of Lung Cancer. Molecular Therapy - Nucleic Acids, 2017, 6, 259-268.	5.1	14
45	Guanylate cyclase C as a target for prevention, detection, and therapy in colorectal cancer. Expert Review of Clinical Pharmacology, 2017, 10, 549-557.	3.1	28
46	The swinging pendulum of cancer immunotherapy personalization. Personalized Medicine, 2017, 14, 259-270.	1.5	3
47	Prime-Boost Immunization Eliminates Metastatic Colorectal Cancer by Producing High-Avidity Effector CD8+T Cells. Journal of Immunology, 2017, 198, 3507-3514.	0.8	29
48	RB Loss Promotes Prostate Cancer Metastasis. Cancer Research, 2017, 77, 982-995.	0.9	67
49	GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome. Cancer Research, 2017, 77, 5095-5106.	0.9	12
50	Immunotherapy in Colorectal Cancer: Where Are We Now?. Current Colorectal Cancer Reports, 2017, 13, 353-361.	0.5	4
51	ST-Producing E. coli Oppose Carcinogen-Induced Colorectal Tumorigenesis in Mice. Toxins, 2017, 9, 279.	3.4	14
52	The Heat-Stable Enterotoxin Receptor, Guanylyl Cyclase C, as a Pharmacological Target in Colorectal Cancer Immunotherapy: A Bench-to-Bedside Current Report. Toxins, 2017, 9, 282.	3.4	4
53	GUCY2C maintains intestinal LGR5+ stem cells by opposing ER stress. Oncotarget, 2017, 8, 102923-102933.	1.8	8
54	Preclinical Evaluation of a Replication-Deficient Recombinant Adenovirus Serotype 5 Vaccine Expressing Guanylate Cyclase C and the PADRE T-helper Epitope. Human Gene Therapy Methods, 2016, 27, 238-250.	2.1	22

#	Article	IF	CITATIONS
55	Guanylyl Cyclase Receptors. , 2016, , 56-60.		1
56	Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity. Nutrition and Diabetes, 2016, 6, e211-e211.	3.2	33
57	Intestinal Enteroids Model Guanylate Cyclase C-Dependent Secretion Induced by Heat-Stable Enterotoxins. Infection and Immunity, 2016, 84, 3083-3091.	2.2	27
58	GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncolmmunology, 2016, 5, e1227897.	4.6	59
59	Guanylyl Cyclase C Hormone Axis at the Intersection of Obesity and Colorectal Cancer. Molecular Pharmacology, 2016, 90, 199-204.	2.3	14
60	Biodistribution and Pharmacokinetics Study of siRNA-loaded Anti-NTSR1-mAb-functionalized Novel Hybrid Nanoparticles in a Metastatic Orthotopic Murine Lung Cancer Model. Molecular Therapy - Nucleic Acids, 2016, 5, e282.	5.1	14
61	Obesity-Induced Colorectal Cancer Is Driven by Caloric Silencing of the Guanylin–GUCY2C Paracrine Signaling Axis. Cancer Research, 2016, 76, 339-346.	0.9	64
62	Targeting guanylate cyclase C in colorectal cancer: Where are we now?. Drugs of the Future, 2016, 41, 0477.	0.1	1
63	A novel role for Cish in the inhibition of TCR signaling. Translational Cancer Research, 2016, 5, S142-S145.	1.0	Ο
64	Abstract 1712: Intestinal stem cell integrity is preserved through modulation of endoplasmic reticulum stress by guanylyl cyclase C. , 2016, , .		0
65	A Phase I study of AD5-GUCY2C-PADRE in stage I and II colon cancer patients. , 2015, 3, .		12
66	Comparative Evaluation of Veriflow®Listeria monocytogenes to USDA and AOAC Culture Based Methods for the Detection of Listeria monocytogenes in Food. Journal of AOAC INTERNATIONAL, 2015, 98, 1325-1334.	1.5	4
67	DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis. Cancer Cell, 2015, 28, 97-113.	16.8	148
68	CD19-Targeted Nanodelivery of Doxorubicin Enhances Therapeutic Efficacy in B-Cell Acute Lymphoblastic Leukemia. Molecular Pharmaceutics, 2015, 12, 2101-2111.	4.6	40
69	Abstract 2882: Calorie-induced silencing of the tumor suppressive guanylin-GUCY2C paracrine axis underlies colorectal cancer in obesity. , 2015, , .		1
70	A Novel CDX2 Isoform Regulates Alternative Splicing. PLoS ONE, 2014, 9, e104293.	2.5	4
71	Polyamine-Blocking Therapy Reverses Immunosuppression in the Tumor Microenvironment. Cancer Immunology Research, 2014, 2, 274-285.	3.4	120
72	Epithelial Immunization Induces Polyfunctional CD8 ⁺ T Cells and Optimal Mousepox Protection. Journal of Virology, 2014, 88, 9472-9475.	3.4	13

#	Article	IF	CITATIONS
73	Could targeting T-helper cells aid the development of effective cancer vaccines?. Immunotherapy, 2014, 6, 959-961.	2.0	1
74	ls Financial Literacy Necessary for Radiation Oncology Residents?. International Journal of Radiation Oncology Biology Physics, 2014, 90, 986-987.	0.8	12
75	The Paracrine Hormone for the GUCY2C Tumor Suppressor, Guanylin, Is Universally Lost in Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2328-2337.	2.5	49
76	Selective antigenâ€specific CD4 ⁺ Tâ€cell, but not CD8 ⁺ Tâ€or Bâ€cell, tolerance corrupts cancer immunotherapy. European Journal of Immunology, 2014, 44, 1956-1966.	2.9	37
77	Veriflow® Campylobacter. Journal of AOAC INTERNATIONAL, 2014, 97, 820-828.	1.5	0
78	Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C. International Journal of Radiation Oncology Biology Physics, 2014, 88, 1188-1195.	0.8	29
79	Synergistic DNA-adenovirus prime-boost immunization eliminates metastatic colorectal cancer by inducing high avidity effector CD8+ T cells. , 2014, 2, .		1
80	GUCY2C lysosomotropic endocytosis delivers immunotoxin therapy to metastatic colorectal cancer. Oncotarget, 2014, 5, 9460-9471.	1.8	22
81	Challenges to chimeric antigen receptor (CAR)-T cell therapy for cancer. Discovery Medicine, 2014, 18, 265-71.	0.5	41
82	Single Dose Tumor Irradiation Primes the Immune System for Therapeutic Cancer Vaccination. International Journal of Radiation Oncology Biology Physics, 2013, 87, S109.	0.8	0
83	GUCY2C-targeted chimeric antigen receptor expressing T cells extend survival in a therapeutic mouse model of metastatic colorectal cancer. , 2013, 1, .		0
84	Translating colorectal cancer prevention through the guanylyl cyclase C signaling axis. Expert Review of Clinical Pharmacology, 2013, 6, 557-564.	3.1	11
85	Immunotherapeutic strategies to target prognostic and predictive markers of cancer. Biomarkers in Medicine, 2013, 7, 23-35.	1.4	9
86	Intestinal GUCY2C Prevents TGF-Î ² Secretion Coordinating Desmoplasia and Hyperproliferation in Colorectal Cancer. Cancer Research, 2013, 73, 6654-6666.	0.9	21
87	Colorectal cancer immunotherapy. Discovery Medicine, 2013, 15, 301-8.	0.5	52
88	Advances in cancer immunotherapy. Discovery Medicine, 2013, 15, 120-5.	0.5	10
89	GUCY2C Opposes Systemic Genotoxic Tumorigenesis by Regulating AKT-Dependent Intestinal Barrier Integrity. PLoS ONE, 2012, 7, e31686.	2.5	71
90	Epitope-targeted cytotoxic T cells mediate lineage-specific antitumor efficacy induced by the cancer mucosa antigen GUCY2C. Cancer Immunology, Immunotherapy, 2012, 61, 713-723.	4.2	24

#	Article	IF	CITATIONS
91	Functional Macroautophagy Induction by Influenza A Virus without a Contribution to Major Histocompatibility Complex Class II-Restricted Presentation. Journal of Virology, 2011, 85, 6453-6463.	3.4	59
92	GUCY2C-targeted cancer immunotherapy: past, present and future. Immunologic Research, 2011, 51, 161-169.	2.9	10
93	A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. Journal of Clinical Investigation, 2011, 121, 3578-3588.	8.2	130
94	Bacterial Heat-Stable Enterotoxins: Translation of Pathogenic Peptides into Novel Targeted Diagnostics and Therapeutics. Toxins, 2010, 2, 2028-2054.	3.4	29
95	The Hormone Receptor GUCY2C Suppresses Intestinal Tumor Formation by Inhibiting AKT Signaling. Gastroenterology, 2010, 138, 241-254.	1.3	102
96	Guanylyl cyclase C as a biomarker for targeted imaging and therapy of metastatic colorectal cancer. Biomarkers in Medicine, 2009, 3, 33-45.	1.4	8
97	Lineage-Specific T-Cell Responses to Cancer Mucosa Antigen Oppose Systemic Metastases without Mucosal Inflammatory Disease. Cancer Research, 2009, 69, 3537-3544.	0.9	35
98	Bile Acids Initiate Lineageâ€Addicted Gastroesophageal Tumorigenesis by Suppressing the EGF Receptorâ€AKT Axis. Clinical and Translational Science, 2009, 2, 286-293.	3.1	11
99	CANCER MUCOSA ANTIGENS A NOVEL PARADIGM IN CANCER IMMUNOTHERAPEUTICS. BIOforum Europe: Trends and Techniques in Life Science Research, 2009, 3, 14-16.	0.0	1
100	Colorectal Cancer Is a Paracrine Deficiency Syndrome Amenable to Oral Hormone Replacement Therapy. Clinical and Translational Science, 2008, 1, 163-167.	3.1	21
101	Cytokine Adjuvanation of Therapeutic Antiâ€ŧumor Immunity Targeted to Cancer Mucosa Antigens. Clinical and Translational Science, 2008, 1, 263-264.	3.1	8
102	Guanylyl Cyclase C–Induced Immunotherapeutic Responses Opposing Tumor Metastases Without Autoimmunity. Journal of the National Cancer Institute, 2008, 100, 950-961.	6.3	48
103	Derivation and Fluidity of Acutely Induced Dysfunctional CD8+ T Cells. Journal of Immunology, 2008, 180, 5300-5308.	0.8	3
104	Mucosally restricted antigens as novel immunological targets for antitumor therapy. Biomarkers in Medicine, 2007, 1, 187-202.	1.4	10
105	The Paracrine Hormone Hypothesis of Colorectal Cancer. Clinical Pharmacology and Therapeutics, 2007, 82, 441-447.	4.7	61
106	Cancer Mucosa Antigens as a Novel Immunotherapeutic Class of Tumor-associated Antigen. Clinical Pharmacology and Therapeutics, 2007, 82, 734-739.	4.7	28
107	Bi-specific immunotherapy for gastrointestinal malignancies. Digestive Medicine Research, 0, 3, 83-83.	0.2	0
108	Immune checkpoint inhibitors in luminal gastrointestinal malignancies: going beyond MSI-H/dMMR, TMBÂand PD-L1. Immunotherapy, 0, , .	2.0	8