Adam J Fleisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2019885/publications.pdf Version: 2024-02-01

2.5

21

#	Article	IF	CITATIONS
1	Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Optics Letters, 2014, 39, 2688.	3.3	142
2	Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Applied Physics B: Lasers and Optics, 2013, 110, 163-175.	2.2	134
3	Mid-Infrared Time-Resolved Frequency Comb Spectroscopy of Transient Free Radicals. Journal of Physical Chemistry Letters, 2014, 5, 2241-2246.	4.6	110
4	Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Optics Letters, 2012, 37, 3285.	3.3	102
5	Coherent cavity-enhanced dual-comb spectroscopy. Optics Express, 2016, 24, 10424.	3.4	84
6	Multiplexed sub-Doppler spectroscopy with an optical frequency comb. Physical Review A, 2016, 94, .	2.5	53
7	Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 4550-4556.	4.6	52
8	Precision spectroscopy of H ¹³ CN using a free-running, all-fiber dual electro-optic frequency comb system. Optics Letters, 2018, 43, 1407.	3.3	33
9	Twenty-Five-Fold Reduction in Measurement Uncertainty for a Molecular Line Intensity. Physical Review Letters, 2019, 123, 043001.	7.8	33
10	Quantum-noise-limited cavity ring-down spectroscopy. Applied Physics B: Lasers and Optics, 2014, 115, 149-153.	2.2	31
11	Mid-infrared interference coatings with excess optical loss below 10  ppm. Optica, 2021, 8, 686.	9.3	29
12	Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region. Optics Letters, 2016, 41, 1612.	3.3	27
13	Precision interferometric measurements of mirror birefringence in high-finesse optical resonators. Physical Review A, 2016, 93, .	2.5	27
14	Absolute 13C/12C isotope amount ratio for Vienna PeeDee Belemnite from infrared absorption spectroscopy. Nature Physics, 2021, 17, 889-893.	16.7	27
15	A variable-temperature cavity ring-down spectrometer with application to line shape analysis of CO2 spectra in the 1600Ânm region. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	25
16	Dual electro-optic frequency comb spectroscopy using pseudo-random modulation. Optics Letters, 2019, 44, 4415.	3.3	25
17	Highâ€Accuracy Nearâ€Infrared Carbon Dioxide Intensity Measurements to Support Remote Sensing. Geophysical Research Letters, 2020, 47, e2019GL086344.	4.0	23
	Doppler-free two-photon cavity ring-down spectroscopy of a nitrous oxide (<mml:math) 0="" etqq0="" ove<="" rgbt="" td="" tj=""><td>NOCR 10 T</td><td>5077 Id (xr</td></mml:math)>	NOCR 10 T	5077 Id (xr

18

Physical Review A, 2020, 101, .

Adam J Fleisher

#	Article	IF	CITATIONS
19	High-accuracy 12C16O2 line intensities in the 2µm wavelength region measured by frequency-stabilized cavity ring-down spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 206, 367-377.	2.3	18
20	Cavity ring-down spectroscopy of CO2 near λÂ=Â2.06µm: Accurate transition intensities for the Orbiting Carbon Observatory-2 (OCO-2) "strong band― Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 252, 107104.	2.3	18
21	Use of ⁷³ Ge NMR Spectroscopy and X-ray Crystallography for the Study of Electronic Interactions in Substituted Tetrakis(phenyl)-, -(phenoxy)-, and -(thiophenoxy)germanes. Organometallics, 2010, 29, 582-590.	2.3	16
22	Frequency stabilization of a quantum cascade laser by weak resonant feedback from a Fabry–Perot cavity. Optics Letters, 2021, 46, 3057.	3.3	16
23	Charge transfer by electronic excitation: Direct measurement by high resolution spectroscopy in the gas phase. Journal of Chemical Physics, 2009, 131, 211101.	3.0	15
24	High-Resolution Electronic Spectroscopy of the Doorway States to Intramolecular Charge Transfer. Journal of Physical Chemistry B, 2013, 117, 4231-4240.	2.6	14
25	Optical feedback linear cavity enhanced absorption spectroscopy. Optics Express, 2021, 29, 26831.	3.4	14
26	Dual-comb cavity ring-down spectroscopy. Scientific Reports, 2022, 12, 2377.	3.3	14
27	Use of ⁷³ Ge NMR Spectroscopy for the Study of Electronic Interactions. Inorganic Chemistry, 2008, 47, 10765-10770.	4.0	13
28	Improvement of the spectroscopic parameters of the air- and self-broadened N <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O and CO lines for the HITRAN2020 database applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, 107735.</mml:math 	2.3	13
29	Quantitative modeling of complex molecular response in coherent cavity-enhanced dual-comb spectroscopy. Journal of Molecular Spectroscopy, 2018, 352, 26-35.	1.2	12
30	Near-infrared cavity ring-down spectroscopy measurements of nitrous oxide in the (4200)â† (0000) and (5000)â† (0000) bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262, 107527.	2.3	12
31	1H,13C, and73Ge NMR spectral analysis of substituted aryltrimethylgermanes. Magnetic Resonance in Chemistry, 2006, 44, 191-194.	1.9	10
32	Excited-State Proton Transfer in <i>syn</i> -2-(2′-Pyridyl)pyrrole Occurs on the Nanosecond Time Scale in the Gas Phase. Journal of Physical Chemistry Letters, 2011, 2, 2114-2117.	4.6	10
33	Precision Spectroscopy of Nitrous Oxide Isotopocules with a Cross-Dispersed Spectrometer and a Mid-Infrared Frequency Comb. Analytical Chemistry, 2020, 92, 13759-13766.	6.5	10
34	Flickering dipoles in the gas phase: Structures, internal dynamics, and dipole moments of β-naphthol-H2O in its ground and excited electronic states. Journal of Chemical Physics, 2011, 134, 114304.	3.0	9
35	Cavity buildup dispersion spectroscopy. Communications Physics, 2021, 4, .	5.3	9
36	Stark-Effect Studies of 1-Phenylpyrrole in the Gas Phase. Dipole Reversal upon Electronic Excitation. Journal of Physical Chemistry Letters, 2010, 1, 2017-2019.	4.6	8

Adam J Fleisher

#	Article	IF	CITATIONS
37	Experimentally measured permanent dipoles induced by hydrogen bonding. The Stark spectrum of indole–NH3. Physical Chemistry Chemical Physics, 2012, 14, 8990.	2.8	6
38	Exploring single and double proton transfer processes in the gas phase: A high resolution electronic spectroscopy study of 5-fluorosalicylic acid. Journal of Chemical Physics, 2011, 134, 084310.	3.0	5
39	Highâ€Resolution Electronic Spectroscopy Studies of <i>meta</i> â€Aminobenzoic Acid in the Gas Phase Reveal the Origins of its Solvatochromic Behavior. ChemPhysChem, 2011, 12, 1808-1815.	2.1	3
40	High-resolution cavity ring-down spectroscopy of the <i>ν</i> ₁ + <i>ν</i> ₆ combination band of methanol at 2.0 μm. Journal of Chemical Physics, 2019, 151, 234202.	3.0	3
41	Doppler-Free Two-Photon Cavity Ring-Down Spectroscopy of a Nitrous Oxide (NO) Vibrational Overtone Transition. Physical Review A, 2020, 101, .	2.5	2
42	Multiheterodyne Infrared Spectroscopy with Pitch-agile Optical Frequency Comb Generators. , 2015, , .		1
43	Multiheterodyne Spectroscopy Using Multi-frequency Combs. , 2017, , .		1
44	Light, Energy and the Environment, 2018: introduction to the joint feature issue. Optics Express, 2019, 27, A856.	3.4	1
45	Optical Sensors and Sensing 2019: introduction to the joint feature issue. Applied Optics, 2020, 59, OSS1.	1.8	1
46	Measuring the conformational properties of 1,2,3,6,7,8-hexahydropyrene and its van der Waals complexes. Journal of Chemical Physics, 2010, 133, 024302.	3.0	0
47	Inside Cover: High-Resolution Electronic Spectroscopy Studies of meta-Aminobenzoic Acid in the Gas Phase Reveal the Origins of its Solvatochromic Behavior (ChemPhysChem 10/2011). ChemPhysChem, 2011, 12, 1774-1774.	2.1	Ο
48	Rapid scanning cavity ring-down spectroscopy at the quantum noise limit. , 2014, , .		0
49	Optical Frequency Comb Generators for Trace Gas Sensing. , 2015, , .		0
50	Doppler-Free Two-Photon Cavity Ring-Down Spectroscopy of a Molecular Vibrational Overtone Transition. , 2021, , .		0
51	Fourier Transform Direct Frequency Comb Spectroscopy in the Near- and Mid-Infrared. , 2013, , .		0
52	Frequency-Stabilized Cavity Ring-Down Spectroscopy in the Mid-Infrared. , 2014, , .		0
53	Time Resolved Frequency Comb Spectroscopy for Studying Gas Phase Free Radical Kinetics. , 2014, , .		0
54	Mode-Resolved Absorption and Dispersion Measurements in High-Finesse Cavities. , 2014, , .		0

#	Article	IF	CITATIONS
55	TIME-RESOLVED FREQUENCY COMB SPECTROSCOPY OF TRANSIENT FREE RADICALS IN THE MID-INFRARED SPECTRAL REGION. , 2014, , .		0
56	Low Power Integrated Path Differential Absorption Lidar Detection of CO2, CH4 and H2O over a 5.5 km Path using a Waveform Driven EO Sideband Spectrometer. , 2015, , .		0
57	QUANTUM-NOISE-LIMITED CAVITY RING-DOWN SPECTROSCOPY IN THE MID-INFRARED. , 2015, , .		0
58	ULTRASENSITIVE, HIGH ACCURACY MEASUREMENTS OF TRACE GAS SPECIES. , 2015, , .		0
59	COLLISION-DEPENDENT LINE AREAS IN THE a1â^†g↕X3Σâ^'g BAND OF MOLECULAR OXYGEN. , 2015, , .		Ο
60	High-precision Measurements of Mid-Infrared Supermirror Birefringence. , 2016, , .		0
61	Precision Doppler-broadened and Sub-Doppler Absorption Spectroscopy using Optical Frequency Comb Generators. , 2016, , .		Ο
62	Coherent Multiheterodyne Spectroscopy using Optical Frequency Comb Generators. , 2016, , .		0
63	OPTICAL MEASUREMENTS OF 14CO2 USING CAVITY RING-DOWN SPECTROSCOPY., 2016, , .		Ο
64	First-Generation Linear Absorption Spectrometer for the Optical Trace-Detection of Radiocarbon. , 2017, , .		0
65	Towards the Robust Trace Detection of Radiocarbon via Linear Absorption Spectroscopy. , 2017, , .		Ο
66	Rapid Frequency Comb Spectroscopy from 4.4 µm to 4.7 µm using a Virtually Imaged Phased Array. , 2017, , .		0
67	Broadband Cavity-Enhanced Precision Molecular Spectroscopy using Electro-optic Frequency Combs. , 2017, , .		0
68	Accurate optical measurements of stable and radioactive carbon isotopologues of CO2. , 2018, , .		0
69	Simultaneous DIAL, IPDA and point sensor measurements of the greenhouse gases, CO2 and H2O. , 2019, , \cdot		Ο
70	Broadband Mid-Infrared Spectroscopy using a Virtually Imaged Phased Array. , 2019, , .		0
71	Light, Energy and the Environment, 2018: introduction to the joint feature issue. Applied Optics, 2019, 58, LEE1.	1.8	Ο
72	Optical Sensors and Sensing, 2019: introduction to the joint feature issue. Optics Express, 2020, 28, 19571.	3.4	0

#	Article	IF	CITATIONS
73	Cavity ring-down spectroscopy of CO near = 2.06 μm: Accurate transition intensities for the Orbiting Carbon Observatory-2 (OCO-2) "strong band". Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 252, .	2.3	0
74	Radiocarbon age is just a number. Nature Physics, 2021, 17, 1432-1432.	16.7	0