Georg Feulner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2019615/publications.pdf

Version: 2024-02-01

77 papers

4,621 citations

30 h-index 65 g-index

96 all docs 96 docs citations

96 times ranked 6125 citing authors

#	Article	IF	CITATIONS
1	Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 2015, 5, 475-480.	8.1	686
2	Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 2018, 556, 191-196.	13.7	612
3	The faint young Sun problem. Reviews of Geophysics, 2012, 50, .	9.0	263
4	Extremely compact massive galaxies at z \hat{A} 1.4. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 373, L36-L40.	1.2	214
5	Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. Journal of Climate, 2013, 26, 5782-5809.	1.2	208
6	The Stellar Mass Function of Galaxies to z  ~ 5 in the FORS Deep and GOODS-South Fields. Astrophysical Journal, 2005, 619, L131-L134.	1.6	201
7	The Munich Nearâ€Infrared Cluster Survey (MUNICS). VI. The Stellar Masses ofKâ€Band–selected Field Galaxies toz â^1⁄4 1.2. Astrophysical Journal, 2004, 608, 742-751.	1.6	179
8	Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Climate of the Past, 2013, 9, 1111-1140.	1.3	157
9	The evolution of the luminosity functions in the FORS Deep Field from low to high redshift. Astronomy and Astrophysics, 2004, 421, 41-58.	2.1	137
10	The Kormendy relation of massive elliptical galaxies at z 1.5: evidence for size evolution. Monthly Notices of the Royal Astronomical Society, 2007, 374, 614-626.	1.6	132
11	Specific Star Formation Rates to Redshift 5 from the FORS Deep Field and the GOODS-S Field. Astrophysical Journal, 2005, 633, L9-L12.	1.6	131
12	Specific Star Formation Rates to Redshift 1.5. Astrophysical Journal, 2005, 621, L89-L92.	1.6	110
13	On the Origin of the Surface Air Temperature Difference between the Hemispheres in Earth's Present-Day Climate. Journal of Climate, 2013, 26, 7136-7150.	1.2	101
14	Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters, 2017, 44, 419-427.	1.5	98
15	The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy. Astronomy and Astrophysics, 2001, 370, 398-406.	2.1	81
16	The density of very massive evolved galaxies to z \hat{A} = 1.7. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 357, L40-L44.	1.2	74
17	The Munich Near-Infrared Cluster Survey - I. Field selection, object extraction and photometry. Monthly Notices of the Royal Astronomical Society, 2001, 325, 550-562.	1.6	72
18	On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophysical Research Letters, 2010, 37, .	1.5	71

#	Article	IF	Citations
19	The Munich Nearâ€Infrared Cluster Survey. II. TheKâ€Band Luminosity Function of Field Galaxies tozâ^1/4 1.2. Astrophysical Journal, 2003, 595, 698-711.	1.6	59
20	The Evolution of the Mass Function Split by Morphology up to Redshift 1 in the FORS Deep and the GOODS-S Fields. Astrophysical Journal, 2006, 639, L1-L4.	1.6	55
21	The impact of <i>Spitzer</i> infrared data on stellar mass estimates – and a revised galaxy stellar mass function at 0 < <i>z</i> < 5. Astronomy and Astrophysics, 2008, 477, 503-512.	2.1	55
22	Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions?. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	54
23	The evolution of the luminosity functions in the FORS deep field from low to high redshift. Astronomy and Astrophysics, 2006, 448, 101-121.	2.1	54
24	A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age. Climate of the Past, 2013, 9, 1321-1330.	1.3	45
25	Formation of most of our coal brought Earth close to global glaciation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11333-11337.	3.3	45
26	Snowball cooling after algal rise. Nature Geoscience, 2015, 8, 659-662.	5.4	40
27	The Munich Near-Infrared Cluster Survey – V. The evolution of the rest-frame K- and J-band galaxy luminosity functions to z 0.7. Monthly Notices of the Royal Astronomical Society, 2003, 342, 605-622.	1.6	39
28	The Star Formation Rate History in the FORS Deep and GOODS-South Fields. Astrophysical Journal, 2004, 616, L83-L86.	1.6	39
29	Global Challenges: Climate Change. Global Challenges, 2017, 1, 5-6.	1.8	37
30	The Munich Near-Infrared Cluster Survey: Number Density Evolution of Massive Field Galaxies to [CLC][ITAL]z[/ITAL][/CLC] â^¼â€‰1.2 as Derived from the [ITAL]K[/ITAL]-Band–selected Survey. Astrophy Journal, 2002, 562, L111-L114.	/s icø l	35
31	How do global temperature drivers influence each other?. European Physical Journal: Special Topics, 2013, 222, 861-873.	1.2	33
32	Climatic fluctuations modeled for carbon and sulfur emissions from end-Triassic volcanism. Earth and Planetary Science Letters, 2020, 537, 116174.	1.8	31
33	Dating the stellar population in massive early-type galaxies atz $\hat{a}^{1/4}$ 1.5. Monthly Notices of the Royal Astronomical Society, 2005, 361, 897-906.	1.6	28
34	Faint young Sun problem more severe due to iceâ€albedo feedback and higher rotation rate of the early Earth. Geophysical Research Letters, 2012, 39, .	1.5	28
35	Massive \$zsim1.3\$ evolved galaxies revealed. Astronomy and Astrophysics, 2003, 398, 127-132.	2.1	28
36	Looking for obscured QSOs in the X-ray emitting ERO population. Astronomy and Astrophysics, 2005, 431, 87-95.	2.1	28

#	Article	IF	CITATIONS
37	The connection between star formation and stellar mass: specific star formation rates to redshift one. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 358, L1-L5.	1.2	24
38	On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming. Environmental Research Letters, 2020, 15, 024003.	2.2	22
39	Limits to biodiversity cycles from a unified model of mass-extinction events. International Journal of Astrobiology, 2011, 10, 123-129.	0.9	21
40	On the Sensitivity of the Devonian Climate to Continental Configuration, Vegetation Cover, Orbital Configuration, CO ₂ Concentration, and Insolation. Paleoceanography and Paleoclimatology, 2019, 34, 1375-1398.	1.3	21
41	Investigating Mesozoic Climate Trends and Sensitivities With a Large Ensemble of Climate Model Simulations. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004134.	1.3	21
42	Socio-economic data for global environmental change research. Nature Climate Change, 2015, 5, 503-506.	8.1	20
43	Climate simulations of Neoproterozoic snowball Earth events: Similar critical carbon dioxide levels for the Sturtian and Marinoan glaciations. Earth and Planetary Science Letters, 2014, 404, 200-205.	1.8	19
44	Time-scale and state dependence of the carbon-cycle feedback to climate. Climate Dynamics, 2014, 42, 1699-1713.	1.7	18
45	On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets. Climate of the Past, 2013, 9, 1749-1759.	1.3	15
46	The Munich Near-Infrared Cluster Survey - IV. Biases in the completeness of near-infrared imaging data. Monthly Notices of the Royal Astronomical Society, 2002, 336, 1329-1341.	1.6	13
47	CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model. Geoscientific Model Development, 2021, 14, 4117-4141.	1.3	13
48	Integrated specific star formation rates of galaxies, groups, and clusters: a continuous upper limit with stellar mass?. Astronomy and Astrophysics, 2006, 451, L13-L16.	2.1	12
49	Climate modelling of mass-extinction events: a review. International Journal of Astrobiology, 2009, 8, 207-212.	0.9	12
50	A Pronounced Spike in Ocean Productivity Triggered by the Chicxulub Impact. Geophysical Research Letters, 2021, 48, e2020GL092260.	1.5	12
51	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	1.3	11
52	The Munich Near-Infrared Cluster Survey - IX. Galaxy evolution to z \hat{A} 2 from optically selected catalogues. Monthly Notices of the Royal Astronomical Society, 2007, 378, 429-448.	1.6	10
53	Asymmetry and uncertainties in biogeophysical climate–vegetation feedback over a range of CO ₂ forcings. Biogeosciences, 2014, 11, 17-32.	1.3	10
54	Coupling framework (1.0) for the PISM $(1.1.4)$ ice sheet model and the MOM5 $(5.1.0)$ ocean model via the PICO ice shelf cavity model in an Antarctic domain. Geoscientific Model Development, 2021, 14, 3697-3714.	1.3	10

#	Article	IF	Citations
55	The Smithsonian solar constant data revisited: no evidence for a strong effect of solar activity in ground-based insolation data. Atmospheric Chemistry and Physics, 2011, 11, 3291-3301.	1.9	8
56	Quantifying the global carbon cycle response to volcanic stratospheric aerosol radiative forcing using Earth System Models. Journal of Geophysical Research D: Atmospheres, 2014, 119, 101-111.	1.2	8
57	On the constraining observations of the dark GRB 001109 and the properties of az= 0.398 radio selected starburst galaxy contained in its error box. Astronomy and Astrophysics, 2004, 424, 833-839.	2.1	7
58	Albedo and heat transport in 3-D model simulations of the early Archean climate. Climate of the Past, 2013, 9, 1841-1862.	1.3	6
59	A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly. Scientific Reports, 2017, 7, 11131.	1.6	6
60	Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond. Scientific Drilling, 0, 28, 93-112.	1.0	4
61	The Mass Function of Field Galaxies at 0.4 $<$ z $<$ 1.2 as Derived from the MUNICS K-Selected Sample. , 0, , 140-145.		3
62	Comment on "Strong signature of the active Sun in 100 years of terrestrial insolation data―by W. Weber. Annalen Der Physik, 2011, 523, 946-950.	0.9	3
63	Global Challenges - an innovative journal for tackling humanity's major challenges. Global Challenges, 2017, 1, 3-4.	1.8	2
64	Reply to Comment on â€~On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming'. Environmental Research Letters, 2021, 16, 038002.	2.2	2
65	On the Relation Between Solar Activity and Clear-Sky Terrestrial Irradiance. Solar Physics, 2013, 282, 615-627.	1.0	1
66	Science under Societal Scrutiny: Reproducibility in Climate Science., 2016,, 269-285.		1
67	Field Galaxy Evolution with the MUNICS Survey. Astrophysics and Space Science, 2001, 277, 579-579.	0.5	O
68	Large-scale structure in the NIR-selected MUNICS survey. Astrophysics and Space Science, 2003, 284, 393-396.	0.5	0
69	The Search for the Afterglow of the Dark GRB 001109. AIP Conference Proceedings, 2003, , .	0.3	O
70	The MUNICS Project: Galaxy Assembly at 0 $<$ z $<$ 1. , 0, , 251-256.		0
71	The TESIS Project: Revealing Massive Early-Type Galaxies at $z\hat{A}$ > $\hat{A}1$. Globular Clusters - Guides To Galaxies, 2006, , 457-458.	0.1	0
72	Understanding the influence of solar irradiance changes on Earth's climate during the Holocene. , 2013, , .		0

#	Article	IF	CITATIONS
73	Large-Scale Structure in the NIR-Selected Munics Survey. , 2003, , 99-102.		O
74	The TESIS Project: Are Type 2 QSO Hidden in X-Ray Emitting EROs?. Globular Clusters - Guides To Galaxies, 0, , 459-460.	0.1	0
75	Integrated specific star formation rates of galaxies, groups, and clusters: a continuous upper limit with stellar mass?. Astronomy and Astrophysics, 2008, 489, L15-L15.	2.1	O
76	Tracing the Mass–Assembly History of Galaxies with Deep Surveys. , 2007, , 310-313.		0
77	Field Galaxy Evolution from the Munich Near-Infrared Cluster Survey (MUNICS)., 0,, 211-213.		0