
Marcel G J Tilanus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2019059/publications.pdf Version: 2024-02-01

MARCEL C. LTHANUS

#	Article	IF	CITATIONS
1	Differential effects of donor-specific HLA antibodies in living versus deceased donor transplant. American Journal of Transplantation, 2018, 18, 2274-2284.	4.7	65
2	PIRCHE-II Is Related to Graft Failure after Kidney Transplantation. Frontiers in Immunology, 2018, 9, 321.	4.8	63
3	Ascorbic acid promotes proliferation of natural killer cell populations inÂculture systems applicable for natural killer cell therapy. Cytotherapy, 2015, 17, 613-620.	0.7	59
4	Clinical and immunological significance of <scp>HLA</scp> ‣ in stem cell transplantation and cancer. Tissue Antigens, 2014, 84, 523-535.	1.0	52
5	Optimal selection of natural killer cells to kill myeloma: the role of HLA-E and NKG2A. Cancer Immunology, Immunotherapy, 2015, 64, 951-963.	4.2	47
6	Antibodies against ARHGDIB are associated with long-term kidney graft loss. American Journal of Transplantation, 2019, 19, 3335-3344.	4.7	46
7	HLA-E regulates NKG2C+ natural killer cell function through presentation of a restricted peptide repertoire. Human Immunology, 2015, 76, 578-586.	2.4	43
8	Polymorphisms within the HLA-DR3 haplotypes. Immunogenetics, 1986, 23, 401-405.	2.4	40
9	Ambiguous DPB1 allele combinations resolved by direct sequencing of selectively amplified alleles. Tissue Antigens, 1995, 46, 345-349.	1.0	35
10	Peptideâ€induced HLAâ€E expression in human PBMCs is dependent on peptide sequence and the HLAâ€E genotype. Tissue Antigens, 2015, 85, 242-251.	1.0	33
11	Sequence-Based Typing of HLA: An Improved Group-Specific Full-Length Gene Sequencing Approach. Methods in Molecular Biology, 2014, 1109, 101-114.	0.9	33
12	Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients. American Journal of Transplantation, 2019, 19, 2926-2933.	4.7	32
13	Toward a Sensible Single-antigen Bead Cutoff Based on Kidney Graft Survival. Transplantation, 2019, 103, 789-797.	1.0	31
14	Insights into the polymorphism in HLAâ€DRA and its evolutionary relationship with HLA haplotypes. Hla, 2020, 95, 117-127.	0.6	26
15	Identification of HLA-A*0111N: A Synonymous Substitution, Introducing an Alternative Splice Site in Exon 3, Silenced the Expression of an HLA-A Allele. Human Immunology, 2005, 66, 912-920.	2.4	25
16	The PROCARE consortium: Toward an improved allocation strategy for kidney allografts. Transplant Immunology, 2014, 31, 184-190.	1.2	25
17	Development and Validation of a Multiplex Non-HLA Antibody Assay for the Screening of Kidney Transplant Recipients. Frontiers in Immunology, 2018, 9, 3002.	4.8	25
18	An overview of the restriction fragment length polymorphism of the HLAâ€D region: its application to individual D― DR―typing by computerized analyses. Tissue Antigens, 1986, 28, 218-227.	1.0	24

Marcel G J Tilanus

#	Article	IF	CITATIONS
19	The role of gene polymorphism in <scp>HLA</scp> class I splicing. International Journal of Immunogenetics, 2016, 43, 65-78.	1.8	23
20	New insights in <scp>HLA</scp> â€E polymorphism by refined analysis of the fullâ€length gene. Hla, 2017, 89, 143-149.	0.6	23
21	NKG2A Expression Is Not per se Detrimental for the Anti-Multiple Myeloma Activity of Activated Natural Killer Cells in an In Vitro System Mimicking the Tumor Microenvironment. Frontiers in Immunology, 2018, 9, 1415.	4.8	22
22	Extended HLA-DPB1 polymorphism: an RNA approach for HLA-DPB1 typing. Immunogenetics, 2005, 57, 790-794.	2.4	19
23	Identification of two new nucleotide mutations (HPRTUtrecht and HPRTMadrid) in exon 3 of the human hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene. Human Genetics, 1993, 91, 451-454.	3.8	18
24	Reduced complexity of RFLP for HLAâ€DR typing by the use of a DRβ3'cDNA probe. Tissue Antigens, 1986, 28 129-135.	^{3,} 1.0	17
25	Fullâ€length HLAâ€DPB1 diversity in multiple alleles of individuals from Caucasian, Black, or Oriental origin. Tissue Antigens, 2012, 79, 165-173.	1.0	17
26	A paired kidney analysis on the impact of pre-transplant anti-HLA antibodies on graft survival. Nephrology Dialysis Transplantation, 2019, 34, 1056-1063.	0.7	17
27	Long-Read Nanopore Sequencing Validated for Human Leukocyte Antigen Class I Typing in Routine Diagnostics. Journal of Molecular Diagnostics, 2020, 22, 912-919.	2.8	16
28	Polymorphism and complexity of HLA-DR: evidence for intra-HLA-DR region crossing-over events. Immunogenetics, 1988, 27, 40-45.	2.4	15
29	A highâ€ŧhroughput Taqman [®] approach for the discrimination of HLAâ€E alleles. Tissue Antigens, 2009, 74, 514-519.	1.0	15
30	How can we reduce costs of solidâ€phase multiplexâ€bead assays used to determine antiâ€≺scp>HLA antibodies?. Hla, 2016, 88, 110-119.	0.6	15
31	Expression of T-cell receptor $\hat{I}\pm$ and \hat{I}^2 variable genes in normal and malignant human T cells. British Journal of Haematology, 1993, 84, 39-48.	2.5	13
32	Antisense oligonucleotides, a novel tool for the control of cytokine effects on human cartilage. focus on interleukins 1 and 6 and proteoglycan synthesis. Arthritis and Rheumatism, 1994, 37, 1357-1362.	6.7	12
33	Detection of a putativeHLA-A*31012 processed (intronless) pseudogene in a laryngeal squamous cell carcinoma. , 2000, 27, 26-34.		12
34	Allorecognition of HLA-DP by CD4+ T cells is affected by polymorphism in its alpha chain. Molecular Immunology, 2014, 59, 19-29.	2.2	12
35	Molecular Typing of HLA-E. Methods in Molecular Biology, 2012, 882, 143-158.	0.9	11
36	Effects of transmembrane region variability on cell surface expression and allorecognition of HLA-DP3. Human Immunology, 2013, 74, 970-977.	2.4	10

#	Article	IF	CITATIONS
37	Uncommon HLA alleles identified by hemizygous ultra-high Sanger sequencing: haplotype associations and reconsideration of their assignment in the Common and Well-Documented catalogue. Human Immunology, 2016, 77, 184-190.	2.4	10
38	RNA and protein expression of HLA-Aâ^—23:19Q. Human Immunology, 2015, 76, 286-291.	2.4	9
39	NK?KIR ligand identification: a quick Q-PCR approach for HLA-C epitope typing. Tissue Antigens, 2007, 69, 334-337.	1.0	8
40	Full-length extension of HLA allele sequences by HLA allele-specific hemizygous Sanger sequencing (SSBT). Human Immunology, 2018, 79, 763-772.	2.4	8
41	A novel multiplexed 11 locus HLA full gene amplification assay using next generation sequencing. Hla, 2020, 95, 104-116.	0.6	8
42	T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation. Frontiers in Immunology, 2021, 12, 784040.	4.8	8
43	Human leukocyte antigen typing using buccal swabs as accurate and nonâ€invasive substitute for venipuncture in children at risk for celiac disease. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1711-1716.	2.8	7
44	Effect of initial immunosuppression on long-term kidney transplant outcome in immunological low-risk patients. Nephrology Dialysis Transplantation, 2019, 34, 1417-1422.	0.7	7
45	Allele and haplotype frequencies of <scp>HLAâ€DPA1</scp> and â€ <scp>DPB1</scp> in the population of Guadeloupe. Tissue Antigens, 2014, 83, 147-153.	1.0	6
46	An improved and validated <scp>RNA HLA</scp> class I <scp>SBT</scp> approach for obtaining full length coding sequences. Tissue Antigens, 2014, 84, 450-458.	1.0	6
47	The HLAâ€Ðw HAG specificity is defined by DRβ cDNA hybridization as a hybrid haplotype carrying DR5 and DRw6 determinants. Tissue Antigens, 1987, 29, 168-172.	1.0	5
48	Inactivation of a functional HLA-A gene: A 4-kb deletion turns HLA-A*24 into a pseudogene. Human Immunology, 2010, 71, 1197-1202.	2.4	5
49	Fullâ€length sequence of a novel <i>HLAâ€B*15:220</i> allele identified in an individual from Guadeloupe. Tissue Antigens, 2012, 79, 75-76.	1.0	5
50	Fullâ€length <scp>HLAâ€DRB1</scp> coding sequences generated by a hemizygous <scp>RNAâ€&BT</scp> approach. Tissue Antigens, 2015, 86, 333-342.	1.0	5
51	Fullâ€length sequence of a novel null allele <i>HLAâ€A*23:38N</i> identified in an individual from Guadeloupe. Tissue Antigens, 2012, 79, 71-72.	1.0	4
52	Saddlebags: A software interface for submitting fullâ€length HLA allele sequences to the EMBLâ€ENA nucleotide database. Hla, 2018, 91, 29-35.	0.6	4
53	Polymorphism clustering of the 21.5 kb DPAâ€promoterâ€DPB region reveals novel extended fullâ€ l ength haplotypes. Hla, 2020, 96, 299-311.	0.6	4
54	Identification of a new allele polymorphism (<i><scp>HLA</scp>â€B*40:79</i>) and correlation with the <scp>HLAâ€B40</scp> (<scp>B60</scp> and <scp>B61</scp>) antigens. Tissue Antigens, 2013, 82, 293-294.	1.0	3

Marcel G J Tilanus

#	Article	IF	CITATIONS
55	The Maastricht Transplant Center: Clinical setting and epitope searches in HLA class II molecules: Does the structural localization of a polymorphic site contribute to its immunogenicity?. Transplant Immunology, 2014, 31, 213-218.	1.2	3
56	Features of a new full length <scp>HLA</scp> allele: <i>A*02:455</i> . Tissue Antigens, 2015, 86, 53-55.	1.0	3
57	The full length genomic sequence of a novel <i><scp>HLA </scp>*03</i> allele: <i><scp>HLA </scp>*03:219</i> . Tissue Antigens, 2015, 85, 75-76.	1.0	3
58	Polymorphism at residue 156 of the new <i><scp>HLA</scp>â€A*02:683</i> allele suggests immunological relevance. Hla, 2017, 90, 107-109.	0.6	3
59	A new <i>HLAâ€C*05</i> allele, <i>HLAâ€C*05:156</i> , characterized by fullâ€length hemizygous sequencing. Hla, 2018, 91, 212-213.	0.6	3
60	Polymorphic differences within <scp>HLA </scp> alleles contribute to alternatively spliced transcripts lacking exon 5. Hla, 2022, 100, 232-243.	0.6	3
61	Half a century of Dutch transplant immunology. Immunology Letters, 2014, 162, 145-149.	2.5	2
62	Specific amino acid patterns define split specificities of HLA-B15 antigens enabling conversion from DNA-based typing to serological equivalents. Immunogenetics, 2020, 72, 339-346.	2.4	2
63	<scp>HLA</scp> frequencies and associations in cystic fibrosis. Tissue Antigens, 2014, 83, 27-31.	1.0	Ο
64	HLA-DPA1 Polymorphism Is a Risk Factor for Graft-Versus-Host Disease Following Unrelated Hematopoietic Stem Cell Transplantation (HSCT). Blood, 2012, 120, 4181-4181.	1.4	0