Wan-Chen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018732/publications.pdf Version: 2024-02-01

WAN-CHENLI

#	Article	IF	CITATIONS
1	Cloning and characterization of BES1/BZR1 transcription factor genes in maize. Plant Growth Regulation, 2018, 86, 235-249.	3.4	62
2	Maize ZmBES1/BZR1-5 Decreases ABA Sensitivity and Confers Tolerance to Osmotic Stress in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 996.	4.1	53
3	Interaction network of core ABA signaling components in maize. Plant Molecular Biology, 2018, 96, 245-263.	3.9	51
4	Differential Expression of MicroRNAs in Response to Drought Stress in Maize. Journal of Integrative Agriculture, 2013, 12, 1414-1422.	3.5	50
5	Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. Journal of Experimental Botany, 2021, 72, 1714-1726.	4.8	46
6	Quantitative Trait Loci for Resistance to Banded Leaf and Sheath Blight in Maize. Crop Science, 2006, 46, 1039-1045.	1.8	42
7	Cloning and Characterization of Functional Trehalose-6-Phosphate Synthase Gene in Maize. Journal of Plant Biology, 2010, 53, 134-141.	2.1	36
8	Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. Journal of Biotechnology, 2011, 153, 181-187.	3.8	35
9	A betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus enhances tolerance of Arabidopsis to high salt and drought stresses. Plant Growth Regulation, 2017, 83, 265-276.	3.4	32
10	Expression Profile of Maize MicroRNAs Corresponding to Their Target Genes Under Drought Stress. Biochemical Genetics, 2014, 52, 474-493.	1.7	26
11	Introgression of Perennial Teosinte Genome into Maize and Identification of Genomic In Situ Hybridization and Microsatellite Markers. Crop Science, 2005, 45, 717-721.	1.8	24
12	RNA Interference-Based Transgenic Maize Resistant to Maize Dwarf Mosaic Virus. Journal of Plant Biology, 2010, 53, 297-305.	2.1	24
13	Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize. Gene, 2014, 549, 179-185.	2.2	24
14	Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli. Gene, 2014, 549, 77-84.	2.2	24
15	Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize. Molecular Breeding, 2007, 20, 93-102.	2.1	20
16	Evaluation and Quantitative Inheritance of Several Drought-Relative Traits in Maize. Agricultural Sciences in China, 2008, 7, 280-290.	0.6	20
17	Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco. Gene, 2014, 539, 132-140.	2.2	20
18	ZmPP2C26 Alternative Splicing Variants Negatively Regulate Drought Tolerance in Maize. Frontiers in Plant Science, 2022, 13, 851531.	3.6	19

Wan-Chen Li

#	Article	IF	CITATIONS
19	Differential Expression of Serine/Threonine Protein Phosphatase Type-2C Under Drought Stress in Maize. Plant Molecular Biology Reporter, 2009, 27, 29-37.	1.8	16
20	RNA interference-mediated resistance to maize dwarf mosaic virus. Plant Cell, Tissue and Organ Culture, 2013, 113, 571-578.	2.3	16
21	Isolation and identification of a vegetative organ-specific promoter from maize. Physiology and Molecular Biology of Plants, 2019, 25, 277-287.	3.1	14
22	Combinatorial interaction of two adjacent cis-active promoter regions mediates the synergistic induction of Bt2 gene by sucrose and ABA in maize endosperm. Plant Science, 2018, 274, 332-340.	3.6	14
23	Maize ZmBES1/BZR1-3 and -9 Transcription Factors Negatively Regulate Drought Tolerance in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 6025.	4.1	11
24	Ectopic expression of antifreeze protein gene from Ammopiptanthus nanus confers chilling tolerance in maize. Crop Journal, 2021, 9, 924-933.	5.2	10
25	Differential Gene Expression in Response to Drought Stress in Maize Seedling. Agricultural Sciences in China, 2009, 8, 767-776.	0.6	9
26	Antifreeze protein from Ammopiptanthus nanus functions in temperature-stress through domain A. Scientific Reports, 2021, 11, 8458.	3.3	6
27	Cloning and truncation modification of trehalose-6-phosphate synthase gene from Selaginella pulvinata. Gene, 2013, 512, 414-421.	2.2	4
28	Functional polymorphism among members of abscisic acid receptor family (ZmPYL) in maize. Journal of Integrative Agriculture, 2020, 19, 2165-2176.	3.5	4
29	Genome-wide analysis of BES1/BZR1 transcription factors and their responses to osmotic stress in Ammopiptanthus nanus. Journal of Forest Research, 2021, 26, 127-135.	1.4	4
30	Characterization of phenylalanine ammonia-lyase genes facilitating flavonoid biosynthesis from two species of medicinal plant <i>Anoectochilus</i> . PeerJ, 0, 10, e13614.	2.0	4
31	Overexpression of vacuolar H + â€pyrophosphatase (H + â€PPase) gene from Ammopiptanthus nanus enhances drought tolerance in maize. Journal of Agronomy and Crop Science, 0, , .	3.5	3
32	Zinc Transporter ZmLAZ1-4 Modulates Zinc Homeostasis on Plasma and Vacuolar Membrane in Maize. Frontiers in Plant Science, 2022, 13, 881055.	3.6	2
33	Genome-Wide Identification and Expression Analyses of AnSnRK2 Gene Family under Osmotic Stress in Ammopiptanthus nanus. Plants, 2021, 10, 882.	3.5	1