
Jie Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018391/publications.pdf Version: 2024-02-01

LE SHAO

#	Article	IF	CITATIONS
1	The critical role of superoxide anion radicals on delaying tetrachlorohydroquinone autooxidation by penicillamine. Free Radical Biology and Medicine, 2021, 163, 369-378.	2.9	4
2	Structure–Activity Relationship Investigation on Reaction Mechanism between Chlorinated Quinoid Carcinogens and Clinically-Used Aldoxime Nerve-Agent Antidote under Physiological Condition. Chemical Research in Toxicology, 2021, 34, 1091-1100.	3.3	0
3	Caffeic Acid Phenyl Ester (CAPE) Protects against Iron-Mediated Cellular DNA Damage through Its Strong Iron-Binding Ability and High Lipophilicity. Antioxidants, 2021, 10, 798.	5.1	10
4	Mechanistic Study on Oxidative DNA Damage and Modifications by Haloquinoid Carcinogenic Intermediates and Disinfection Byproducts. Chemical Research in Toxicology, 2021, 34, 1701-1712.	3.3	5
5	The cell-impermeable Ru(II) polypyridyl complex as a potent intracellular photosensitizer under visible light irradiation via ion-pairing with suitable lipophilic counter-anions. Free Radical Biology and Medicine, 2021, 171, 69-79.	2.9	9
6	Potent oxidation of DNA by Ru(<scp>ii</scp>) tri(polypyridyl) complexes under visible light irradiation <i>via</i> a singlet oxygen-mediated mechanism. Inorganic Chemistry Frontiers, 2021, 8, 3421-3432.	6.0	7
7	An unexpected new pathway for nitroxide radical production via more reactve nitrogen-centered amidyl radical intermediate during detoxification of the carcinogenic halogenated quinones by N-alkyl hydroxamic acids. Free Radical Biology and Medicine, 2020, 146, 150-159.	2.9	8
8	Unexpected activation of N-alkyl hydroxamic acids to produce reactive N-centered free radicals and DNA damage by carcinogenic chlorinated quinones under normal physiological conditions. Free Radical Biology and Medicine, 2020, 146, 70-78.	2.9	10
9	An unexpected antioxidant and redox activity for the classic copper-chelating drug penicillamine. Free Radical Biology and Medicine, 2020, 147, 150-158.	2.9	14
10	First Direct and Unequivocal Electron Spin Resonance Spin-Trapping Evidence for pH-Dependent Production of Hydroxyl Radicals from Sulfate Radicals. Environmental Science & Technology, 2020, 54, 14046-14056.	10.0	110
11	Mechanism of synergistic DNA damage induced by caffeic acid phenethyl ester (CAPE) and Cu(II): Competitive binding between CAPE and DNA with Cu(II)/Cu(I). Free Radical Biology and Medicine, 2020, 159, 107-118.	2.9	10
12	Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Theranostics, 2020, 10, 6384-6398.	10.0	27
13	Potent Oxidation of DNA by Haloquinoid Disinfection Byproducts to the More Mutagenic Imidazolone dlz via an Unprecedented Haloquinone-Enoxy Radical-Mediated Mechanism. Environmental Science & Technology, 2020, 54, 6244-6253.	10.0	12
14	Molecular mechanism for the activation of the anti-tuberculosis drug isoniazid by Mn(III): First detection and unequivocal identification of the critical N-centered isoniazidyl radical and its exact location. Free Radical Biology and Medicine, 2019, 143, 232-239.	2.9	10
15	What Are the Major Physicochemical Factors in Determining the Preferential Nuclear Uptake of the DNA "Light-Switching―Ru(II)-Polypyridyl Complex in Live Cells via Ion-Pairing with Chlorophenolate Counter-Anions?. Journal of Physical Chemistry Letters, 2019, 10, 4123-4128.	4.6	10
16	Targeted live-cell nuclear delivery of the DNA â€~light-switching' Ru(II) complex via ion-pairing with chlorophenolate counter-anions: the critical role of binding stability and lipophilicity of the ion-pairing complexes. Nucleic Acids Research, 2019, 47, 10520-10528.	14.5	18
17	Enantioselective and Differential Fluorescence Lifetime Imaging of Nucleus and Nucleolus by the Two Enantiomers of Chiral Os(II) Polypyridyl Complex. Journal of Physical Chemistry Letters, 2019, 10, 5909-5916.	4.6	8
18	Mechanism of unprecedented hydroxyl radical production and site-specific oxidative DNA damage by photoactivation of the classic arylhydroxamic acid carcinogens. Carcinogenesis, 2019, , .	2.8	6

Jie Shao

#	Article	IF	CITATIONS
19	An unusual double radical homolysis mechanism for the unexpected activation of the aldoxime nerve-agent antidotes by polyhalogenated quinoid carcinogens under normal physiological conditions. Free Radical Biology and Medicine, 2019, 130, 1-7.	2.9	12
20	Mechanism of synergistic DNA damage induced by the hydroquinone metabolite of brominated phenolic environmental pollutants and Cu(II): Formation of DNA-Cu complex and site-specific production of hydroxyl radicals. Free Radical Biology and Medicine, 2017, 104, 54-63.	2.9	40
21	Mechanism of Intrinsic Chemiluminescence Production from the Degradation of Persistent Chlorinated Phenols by the Fenton System: A Structure–Activity Relationship Study and the Critical Role of Quinoid and Semiquinone Radical Intermediates. Environmental Science & Technology, 2017, 51, 2934-2943.	10.0	27
22	Intrinsic chemiluminescence production from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes: Mechanism, structure–activity relationship and potential applications. Journal of Environmental Sciences, 2017, 62, 68-83.	6.1	13
23	An Exceptionally Facile Two-Step Structural Isomerization and Detoxication via a Water-Assisted Double Lossen Rearrangement. Scientific Reports, 2016, 6, 39207.	3.3	11
24	The Unexpected and Exceptionally Facile Chemical Modification of the Phenolic Hydroxyl Group of Tyrosine by Polyhalogenated Quinones under Physiological Conditions. Chemical Research in Toxicology, 2016, 29, 1699-1705.	3.3	8
25	Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens. Free Radical Biology and Medicine, 2013, 63, 459-466.	2.9	20
26	Potent methyl oxidation of 5-methyl-2′-deoxycytidine by halogenated quinoid carcinogens and hydrogen peroxide via a metal-independent mechanism. Free Radical Biology and Medicine, 2013, 60, 177-182.	2.9	40
27	Oxidation of 8-Oxo-7,8-dihydro-2′-deoxyguanosine by Oxyl Radicals Produced by Photolysis of Azo Compounds. Chemical Research in Toxicology, 2010, 23, 933-938.	3.3	10
28	Oxidative Modification of Guanine Bases Initiated by Oxyl Radicals Derived from Photolysis of Azo Compounds. Journal of Physical Chemistry B, 2010, 114, 6685-6692.	2.6	39