
Óscar Castaño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2018299/publications.pdf Version: 2024-02-01

Δ"ςсар Састад+0

#	Article	IF	CITATIONS
1	Biomaterials in orthopaedics. Journal of the Royal Society Interface, 2008, 5, 1137-1158.	1.5	1,161
2	Electrospun materials as potential platforms for bone tissue engineering. Advanced Drug Delivery Reviews, 2009, 61, 1065-1083.	6.6	438
3	Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Superconductor Science and Technology, 2006, 19, S13-S26.	1.8	205
4	A short review: Recent advances in electrospinning for bone tissue regeneration. Journal of Tissue Engineering, 2012, 3, 204173141244353.	2.3	135
5	Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Materials Science and Engineering C, 2014, 44, 183-190.	3.8	127
6	Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Advanced Drug Delivery Reviews, 2018, 129, 95-117.	6.6	127
7	Chemical solution deposition: a path towards low cost coated conductors. Superconductor Science and Technology, 2004, 17, 1055-1064.	1.8	121
8	The influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7films. Superconductor Science and Technology, 2005, 18, 1141-1150.	1.8	97
9	Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials, 2014, 35, 4769-4781.	5.7	90
10	Angiogenesis in Bone Regeneration: Tailored Calcium Release in Hybrid Fibrous Scaffolds. ACS Applied Materials & Interfaces, 2014, 6, 7512-7522.	4.0	79
11	Nanotechnology Approaches in Chronic Wound Healing. Advances in Wound Care, 2021, 10, 234-256.	2.6	76
12	Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis. , 2012, 24, 90-106.		66
13	High quality YBa2Cu3O7thin films grown by trifluoroacetates metalorganic deposition. Superconductor Science and Technology, 2003, 16, 45-53.	1.8	56
14	The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment. Acta Biomaterialia, 2016, 29, 435-445.	4.1	39
15	Modular bioink for 3D printing of biocompatible hydrogels: sol–gel polymerization of hybrid peptides and polymers. RSC Advances, 2017, 7, 12231-12235.	1.7	39
16	Influence of porosity on the critical currents of trifluoroacetate-MOD YBa/sub 2/Cu/sub 3/O/sub 7/ films. IEEE Transactions on Applied Superconductivity, 2003, 13, 2504-2507.	1.1	38
17	Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology, 2018, 29, 395102.	1.3	38
18	Hybrid Organic-Inorganic Scaffolding Biomaterials for Regenerative Therapies. Current Organic Chemistry, 2014, 18, 2299-2314.	0.9	36

Óscar Castaño

#	Article	IF	CITATIONS
19	Hierarchically engineered fibrous scaffolds for bone regeneration. Journal of the Royal Society Interface, 2013, 10, 20130684.	1.5	34
20	The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche. Biomaterials, 2013, 34, 2221-2233.	5.7	33
21	Injectable and fast resorbable calcium phosphate cement for body-setting bone grafts. Journal of Materials Science: Materials in Medicine, 2010, 21, 2049-2056.	1.7	32
22	Electrospun polymer scaffolds modified with drugs for tissue engineering. Materials Science and Engineering C, 2017, 77, 493-499.	3.8	32
23	Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Biofabrication, 2020, 12, 025008.	3.7	27
24	Towards 4th generation biomaterials: a covalent hybrid polymer–ormoglass architecture. Nanoscale, 2015, 7, 15349-15361.	2.8	26
25	Enhanced low field magnetoresistive response in (La2/3Sr1/3MnO3)x/(CeO2)1â^'x composite thick films prepared by screen printing. Journal of Applied Physics, 2003, 94, 2524-2528.	1.1	23
26	Electrospinning Technology in Tissue Regeneration. Methods in Molecular Biology, 2012, 811, 127-140.	0.4	21
27	Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. Biotechnology Letters, 2015, 37, 935-942.	1.1	21
28	PEG hydrogel containing calcium-releasing particles and mesenchymal stromal cells promote vessel maturation. Acta Biomaterialia, 2018, 67, 53-65.	4.1	19
29	Phase Diagram at Low Temperature of the System ZrO2/Nb2O5. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2001, 627, 294-298.	0.6	18
30	Effect of structure, topography and chemistry on fibroblast adhesion and morphology. Journal of Materials Science: Materials in Medicine, 2014, 25, 1781-1787.	1.7	18
31	The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation. Acta Biomaterialia, 2017, 54, 377-385.	4.1	18
32	A novel hybrid nanofibrous strategy to target progenitor cells for cost-effective in situ angiogenesis. Journal of Materials Chemistry B, 2016, 4, 6967-6978.	2.9	16
33	A microphysiological system combining electrospun fibers and electrical stimulation for the maturation of highly anisotropic cardiac tissue. Biofabrication, 2021, 13, 035047.	3.7	16
34	Chemical solution techniques for epitaxial growth of oxide buffer and YBa2Cu3O7 films. Journal of the European Ceramic Society, 2004, 24, 1831-1835.	2.8	14
35	An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement. Materials Science and Engineering C, 2016, 67, 20-25.	3.8	14
36	Engineering Cellâ€Derived Matrices: From 3D Models to Advanced Personalized Therapies. Advanced Functional Materials, 2020, 30, 2000496.	7.8	14

#	Article	IF	CITATIONS
37	Simultaneous para-ferrimagnetic, metal-insulator, and orthorhombic-monoclinic transitions in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mrow><mml:mtext>YBaCo</mml:mtext></mml:mrow><mml:m Physical Review B, 2010, 81, .</mml:m </mml:mrow></mml:math>	n>2 <td>:mn></td>	:mn>
38	Polymeric Composite Dressings Containing Calcium-Releasing Nanoparticles Accelerate Wound Healing in Diabetic Mice. Advances in Wound Care, 2021, 10, 301-316.	2.6	12
39	The effect of oxygen disorder on magnetic properties of PrBaCo ₂ O _{5.50} layered cobaltite. Journal of Physics Condensed Matter, 2008, 20, 104228.	0.7	11
40	Influence of R-ion size on spin state of Co and magnetic properties of RBaCo2O5.50 cobaltites. Journal of Applied Physics, 2008, 103, 07F713.	1.1	11
41	Optimization of blend parameters for the fabrication of polycaprolactoneâ€silicon based ormoglass nanofibers by electrospinning. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1287-1293.	1.6	10
42	Epitaxial nucleation and growth of buffer layers and Y123 coated conductors deposited by metal-organic decomposition. Physica C: Superconductivity and Its Applications, 2002, 372-376, 806-809.	0.6	9
43	Kinetics study of YBCO thin film epitaxic growth on LAO(100) single crystals by the TFA-MOD method. Superconductor Science and Technology, 2004, 17, 1415-1419.	1.8	9
44	Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment. International Journal of Nanomedicine, 2017, Volume 12, 4901-4919.	3.3	9
45	In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffolds. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	1.9	7
46	Water vapour pressure influence on the kinetics of the superconducting YBCO thin films epitaxic growth by the TFA–MOD method. Physica C: Superconductivity and Its Applications, 2006, 450, 48-55.	0.6	5
47	Stochastic modulation evidences a transitory EGF-Ras-ERK MAPK activity induced by PRMT5. Computers in Biology and Medicine, 2021, 133, 104339.	3.9	5
48	Chemical solution growth of superconductors: a new path towards high critical current coated conductors. Physica C: Superconductivity and Its Applications, 2004, 408-410, 913-914.	0.6	4
49	Biomaterials for Tissue Engineering of Hard Tissues. , 2009, , 1-42.		4
50	Feasible and pure P2O5-CaO nanoglasses: An in-depth NMR study of synthesis for the modulation of the bioactive ion release. Acta Biomaterialia, 2019, 94, 574-584.	4.1	4
51	Chemotactic TEG3 Cells' Guiding Platforms Based on PLA Fibers Functionalized With the SDF-1α/CXCL12 Chemokine for Neural Regeneration Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 627805.	2.0	4
52	Catheter tip distensibility substantially influences the aspiration force of thrombectomy devices. Journal of NeuroInterventional Surgery, 2021, , neurintsurg-2021-017487.	2.0	4
53	Preparation of anhydrous TFA solution for deposition of YBa2Cu3O7-xthin films. Journal of Physics: Conference Series, 2006, 43, 178-181.	0.3	3
54	Layer-by-layer modification effects on a nanopore's inner surface of polycarbonate track-etched membranes. RSC Advances, 2020, 10, 35930-35940.	1.7	3

Óscar Castaño

#	Article	IF	CITATIONS
55	Trackability of distal access catheters: an in vitro quantitative evaluation of navigation strategies. Journal of NeuroInterventional Surgery, 2023, 15, 496-501.	2.0	3
56	Kinetics characterization of YBCO thin films growth on LAO (100) single crystals by the TFA-MOD reaction. Journal of Physics: Conference Series, 2006, 43, 263-266.	0.3	2
57	Development of a novel automatable fabrication method based on electrospinning co electrospraying for rotator cuff augmentation patches. PLoS ONE, 2019, 14, e0224661.	1.1	2
58	Nucleation Mechanism OF YBa2Cu3O7by CSD using TFA Precursors. Journal of Physics: Conference Series, 2006, 43, 321-324.	0.3	1
59	Structural properties, magnetic and oxygen-vacancies order in Y(Ba _{1â^'x} Sr _x)Co ₂ O _{5.5} layered cobaltites. Journal of Physics: Conference Series, 2010, 200, 012039.	0.3	1
60	Biofunctionalization of polymeric surfaces. , 2015, 2015, 1745-8.		1
61	Bioactive fibers for bone regeneration. , 2018, , 205-220.		1
62	EP50*â \in Catheter tip distensibility substantially influences the aspiration force of thrombectomy devices. , 2021, , .		1
63	Time-Lapse Intravital Imaging of Biomaterials Integration in Tissues using a Multicolor Multiphoton Microscope. , 2019, , .		0
64	Response to letter: How much will a catheter tip expand in aspiration thrombectomy?. Journal of NeuroInterventional Surgery, 2021, , neurintsurg-2021-017919.	2.0	0
65	Synthesis of Functional Materials for Bone Regeneration. , 2015, , 1-8.		0
66	Synthesis of Functional Materials for Bone Regeneration. , 2016, , 4010-4017.		0